文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

GPerturb:单细胞扰动数据的高斯过程建模

GPerturb: Gaussian process modelling of single-cell perturbation data.

作者信息

Xing Hanwen, Yau Christopher

机构信息

Nuffield Department for Women's and Reproductive Health, University of Oxford, Oxford, UK.

Health Data Research UK, London, UK.

出版信息

Nat Commun. 2025 Jul 1;16(1):5423. doi: 10.1038/s41467-025-61165-7.


DOI:10.1038/s41467-025-61165-7
PMID:40593897
Abstract

Single-cell RNA sequencing and CRISPR screening enable high-throughput analysis of genetic perturbations at single-cell resolution. Understanding combinatorial perturbation effects is essential but challenging due to data sparsity and complex biological mechanisms. We present GPerturb, a Gaussian process-based sparse perturbation regression model designed to estimate gene-level perturbation effects. GPerturb employs an additive structure to separate signal from noise and captures sparse, interpretable effects from both discrete and continuous responses. It also provides uncertainty estimates for the presence and strength of perturbation effects on individual genes. We demonstrate the use GPerturb on both simulated and real-world datasets, characterising its competitive performance with current state-of-the-art methods. Furthermore, the model reveals meaningful gene-perturbation interactions and identifies effects consistent with known biology. GPerturb offers a novel approach for uncovering complex dependencies between gene expression and perturbations and advancing our understanding of gene regulation at the single-cell level.

摘要

单细胞RNA测序和CRISPR筛选能够在单细胞分辨率下对基因扰动进行高通量分析。由于数据稀疏性和复杂的生物学机制,理解组合扰动效应至关重要但具有挑战性。我们提出了GPerturb,这是一种基于高斯过程的稀疏扰动回归模型,旨在估计基因水平的扰动效应。GPerturb采用加法结构将信号与噪声分离,并从离散和连续响应中捕获稀疏、可解释的效应。它还提供了对单个基因扰动效应的存在和强度的不确定性估计。我们展示了GPerturb在模拟数据集和真实世界数据集上的应用,表征了其与当前最先进方法相比的竞争性能。此外,该模型揭示了有意义的基因-扰动相互作用,并识别出与已知生物学一致的效应。GPerturb为揭示基因表达与扰动之间的复杂依赖性以及推进我们对单细胞水平基因调控的理解提供了一种新方法。

相似文献

[1]
GPerturb: Gaussian process modelling of single-cell perturbation data.

Nat Commun. 2025-7-1

[2]
Diagnostic tests and algorithms used in the investigation of haematuria: systematic reviews and economic evaluation.

Health Technol Assess. 2006-6

[3]
Intensive case management for severe mental illness.

Cochrane Database Syst Rev. 2010-10-6

[4]
Intensive case management for severe mental illness.

Cochrane Database Syst Rev. 2017-1-6

[5]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2020-1-9

[6]
Interventions for central serous chorioretinopathy: a network meta-analysis.

Cochrane Database Syst Rev. 2015-12-22

[7]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2017-12-22

[8]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[9]
Sertindole for schizophrenia.

Cochrane Database Syst Rev. 2005-7-20

[10]
Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma.

Cochrane Database Syst Rev. 2022-3-2

本文引用的文献

[1]
Toward a foundation model of causal cell and tissue biology with a Perturbation Cell and Tissue Atlas.

Cell. 2024-8-22

[2]
Harnessing the deep learning power of foundation models in single-cell omics.

Nat Rev Mol Cell Biol. 2024-8

[3]
Large-scale foundation model on single-cell transcriptomics.

Nat Methods. 2024-8

[4]
A mini-review on perturbation modelling across single-cell omic modalities.

Comput Struct Biotechnol J. 2024-4-25

[5]
Bayesian inference for identifying tumour-specific cancer dependencies through integration of ex-vivo drug response assays and drug-protein profiling.

BMC Bioinformatics. 2024-3-8

[6]
scGPT: toward building a foundation model for single-cell multi-omics using generative AI.

Nat Methods. 2024-8

[7]
Scalable genetic screening for regulatory circuits using compressed Perturb-seq.

Nat Biotechnol. 2024-8

[8]
A new Bayesian factor analysis method improves detection of genes and biological processes affected by perturbations in single-cell CRISPR screening.

Nat Methods. 2023-11

[9]
Learning single-cell perturbation responses using neural optimal transport.

Nat Methods. 2023-11

[10]
Predicting transcriptional outcomes of novel multigene perturbations with GEARS.

Nat Biotechnol. 2024-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索