文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种新的贝叶斯因子分析方法提高了单细胞 CRISPR 筛选中扰动影响的基因和生物过程的检测能力。

A new Bayesian factor analysis method improves detection of genes and biological processes affected by perturbations in single-cell CRISPR screening.

机构信息

Graduate Program of Biophysical Sciences, University of Chicago, Chicago, IL, USA.

Department of Human Genetics, University of Chicago, Chicago, IL, USA.

出版信息

Nat Methods. 2023 Nov;20(11):1693-1703. doi: 10.1038/s41592-023-02017-4. Epub 2023 Sep 28.


DOI:10.1038/s41592-023-02017-4
PMID:37770710
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10630124/
Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR) screening coupled with single-cell RNA sequencing has emerged as a powerful tool to characterize the effects of genetic perturbations on the whole transcriptome at a single-cell level. However, due to its sparsity and complex structure, analysis of single-cell CRISPR screening data is challenging. In particular, standard differential expression analysis methods are often underpowered to detect genes affected by CRISPR perturbations. We developed a statistical method for such data, called guided sparse factor analysis (GSFA). GSFA infers latent factors that represent coregulated genes or gene modules; by borrowing information from these factors, it infers the effects of genetic perturbations on individual genes. We demonstrated through extensive simulation studies that GSFA detects perturbation effects with much higher power than state-of-the-art methods. Using single-cell CRISPR data from human CD8 T cells and neural progenitor cells, we showed that GSFA identified biologically relevant gene modules and specific genes affected by CRISPR perturbations, many of which were missed by existing methods, providing new insights into the functions of genes involved in T cell activation and neurodevelopment.

摘要

成簇规律间隔短回文重复 (CRISPR) 筛选与单细胞 RNA 测序相结合,已成为在单细胞水平上描述遗传扰动对整个转录组影响的强大工具。然而,由于其稀疏性和复杂结构,单细胞 CRISPR 筛选数据的分析具有挑战性。特别是,标准的差异表达分析方法通常无法检测到受 CRISPR 扰动影响的基因。我们开发了一种用于此类数据的统计方法,称为有指导的稀疏因子分析 (GSFA)。GSFA 推断表示共调控基因或基因模块的潜在因子;通过从这些因子中借用信息,它推断遗传扰动对单个基因的影响。通过广泛的模拟研究,我们证明 GSFA 比最先进的方法具有更高的检测扰动效果的能力。使用来自人 CD8 T 细胞和神经祖细胞的单细胞 CRISPR 数据,我们表明 GSFA 鉴定了具有生物学意义的基因模块和受 CRISPR 扰动影响的特定基因,其中许多基因被现有方法所忽略,为 T 细胞激活和神经发育中涉及的基因的功能提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/f191939571cd/41592_2023_2017_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/9a1649401656/41592_2023_2017_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/62e25a9ad760/41592_2023_2017_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/5042e628424a/41592_2023_2017_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/d8efddec8d9f/41592_2023_2017_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/4ef507ac4df6/41592_2023_2017_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/ae518bdf063e/41592_2023_2017_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/f9c2b1414227/41592_2023_2017_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/3f7c93eab40f/41592_2023_2017_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/7d62de492fb6/41592_2023_2017_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/773a6a2c4209/41592_2023_2017_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/f42613556b40/41592_2023_2017_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/8ee23fb8c525/41592_2023_2017_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/f191939571cd/41592_2023_2017_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/9a1649401656/41592_2023_2017_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/62e25a9ad760/41592_2023_2017_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/5042e628424a/41592_2023_2017_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/d8efddec8d9f/41592_2023_2017_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/4ef507ac4df6/41592_2023_2017_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/ae518bdf063e/41592_2023_2017_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/f9c2b1414227/41592_2023_2017_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/3f7c93eab40f/41592_2023_2017_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/7d62de492fb6/41592_2023_2017_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/773a6a2c4209/41592_2023_2017_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/f42613556b40/41592_2023_2017_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/8ee23fb8c525/41592_2023_2017_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc05/10630124/f191939571cd/41592_2023_2017_Fig13_ESM.jpg

相似文献

[1]
A new Bayesian factor analysis method improves detection of genes and biological processes affected by perturbations in single-cell CRISPR screening.

Nat Methods. 2023-11

[2]
SCEPTRE improves calibration and sensitivity in single-cell CRISPR screen analysis.

Genome Biol. 2021-12-20

[3]
CEDA: integrating gene expression data with CRISPR-pooled screen data identifies essential genes with higher expression.

Bioinformatics. 2022-11-30

[4]
Next-generation forward genetic screens: uniting high-throughput perturbations with single-cell analysis.

Trends Genet. 2024-2

[5]
Robust differential expression testing for single-cell CRISPR screens at low multiplicity of infection.

Genome Biol. 2024-5-17

[6]
Dissecting key regulators of transcriptome kinetics through scalable single-cell RNA profiling of pooled CRISPR screens.

Nat Biotechnol. 2024-8

[7]
Functional Genomics via CRISPR-Cas.

J Mol Biol. 2018-6-28

[8]
Compact CRISPR genetic screens enabled by improved guide RNA library cloning.

Genome Biol. 2024-1-19

[9]
Genome-wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune Function.

Cell. 2018-11-15

[10]
[Research advances on the development and application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein system].

Zhonghua Shao Shang Za Zhi. 2021-7-20

引用本文的文献

[1]
GPerturb: Gaussian process modelling of single-cell perturbation data.

Nat Commun. 2025-7-1

[2]
Computational modeling of single-cell dynamics data.

Brief Bioinform. 2025-5-1

[3]
Unlocking Plant Resilience: Metabolomic Insights into Abiotic Stress Tolerance in Crops.

Metabolites. 2025-6-9

[4]
Decoding heterogeneous single-cell perturbation responses.

Nat Cell Biol. 2025-3

[5]
Modeling and predicting single-cell multi-gene perturbation responses with scLAMBDA.

bioRxiv. 2024-12-8

[6]
High-throughput screening for optimizing adoptive T cell therapies.

Exp Hematol Oncol. 2024-11-13

[7]
Multiplexed multimodal single-cell technologies: From observation to perturbation analysis.

Mol Cells. 2024-12

[8]
A scalable, high-throughput neural development platform identifies shared impact of ASD genes on cell fate and differentiation.

bioRxiv. 2024-9-26

[9]
PerturBase: a comprehensive database for single-cell perturbation data analysis and visualization.

Nucleic Acids Res. 2025-1-6

[10]
Guide assignment in single-cell CRISPR screens using crispat.

Bioinformatics. 2024-9-2

本文引用的文献

[1]
SCEPTRE improves calibration and sensitivity in single-cell CRISPR screen analysis.

Genome Biol. 2021-12-20

[2]
Single-cell normalization and association testing unifying CRISPR screen and gene co-expression analyses with Normalisr.

Nat Commun. 2021-11-4

[3]
Interrogating immune cells and cancer with CRISPR-Cas9.

Trends Immunol. 2021-5

[4]
In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with autism risk genes.

Science. 2020-11-27

[5]
High-throughput single-cell functional elucidation of neurodevelopmental disease-associated genes reveals convergent mechanisms altering neuronal differentiation.

Genome Res. 2020-9

[6]
In vivo functional screening for systems-level integrative cancer genomics.

Nat Rev Cancer. 2020-7-7

[7]
MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data.

Genome Biol. 2020-5-11

[8]
Epigenetic driver mutations in ARID1A shape cancer immune phenotype and immunotherapy.

J Clin Invest. 2020-5-1

[9]
scMAGeCK links genotypes with multiple phenotypes in single-cell CRISPR screens.

Genome Biol. 2020-1-24

[10]
Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model.

Genome Biol. 2019-12-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索