Suppr超能文献

使用幽灵流式细胞术通过人工智能驱动的慢性髓性白血病细胞无标记检测

Artificial intelligence-driven label-free detection of chronic myeloid leukemia cells using ghost cytometry.

作者信息

Suzuki Kohjin, Watanabe Naoki, Tsukune Yutaka, Inano Tadaaki, Kinoshita Shintaro, Tomoda Sayuri, Yamada Kohei, Konishi Yusuke, Kuwana Takuya, Sugiyama Takeshi, Fukada Kenji, Yamada Kazuhiro, Ando Miki, Takaku Tomoiku

机构信息

Department of Hematology, Juntendo University Graduate School of Medicine, 3-1-3, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.

Technology Innovation, Sysmex Corporation, 4-4-4, Takatsukadai, Nishi-ku, Kobe, 651-2271, Japan.

出版信息

Sci Rep. 2025 Jul 1;15(1):21046. doi: 10.1038/s41598-025-06664-9.

Abstract

Early diagnosis and treatment initiation of chronic myeloid leukemia (CML) are considered to increase the rate of deep molecular response. However, the early diagnosis of CML is challenging due to the absence of clinical symptoms and peripheral blood test anomaly, especially at the timing of peripheral white blood cell count is within a normal range. This study explored the possibility of artificial intelligence (AI)-based quantitative detection of CML cells using ghost cytometry (GC) technology. We created pre-trained AI models, using the morphological information data of the peripheral blood leukocytes obtained from patients newly diagnosed with CML and healthy individuals. We applied these models to peripheral blood samples from CML patients after initiating tyrosine kinase inhibitor treatment at various time points, which contains smaller amounts of tumor cells. The AI model accurately detected CML cells and a strong correlation between AI-detected CML cells and actual BCR::ABL1 mRNA levels was observed. We concluded that the multidimensional morphological information of single cells obtained using GC, combined with machine learning algorithms, enables the quantitative detection of label-free CML cells. Our finding may enable the development of a screening test that can identify early-stage patients with CML before numerical abnormalities appear in blood tests.

摘要

慢性粒细胞白血病(CML)的早期诊断和治疗启动被认为可提高深度分子反应率。然而,由于缺乏临床症状和外周血检测异常,尤其是在外周白细胞计数处于正常范围时,CML的早期诊断具有挑战性。本研究探讨了使用流式幻影细胞术(GC)技术基于人工智能(AI)定量检测CML细胞的可能性。我们利用从新诊断的CML患者和健康个体获得的外周血白细胞形态学信息数据创建了预训练的AI模型。我们将这些模型应用于CML患者在不同时间点开始酪氨酸激酶抑制剂治疗后的外周血样本,这些样本中含有较少量的肿瘤细胞。AI模型准确地检测到了CML细胞,并且观察到AI检测到的CML细胞与实际BCR::ABL1 mRNA水平之间存在很强的相关性。我们得出结论,使用GC获得的单细胞多维形态学信息与机器学习算法相结合,能够对无标记的CML细胞进行定量检测。我们的发现可能有助于开发一种筛查测试,该测试能够在血液检测出现数值异常之前识别出CML早期患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/236b/12216930/7b694cd65a3b/41598_2025_6664_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验