Suppr超能文献

基于机器学习算法的鲜红斑痣光动力疗法疗效预测模型构建。

The construction of HMME-PDT efficacy prediction model for port-wine stain based on machine learning algorithms.

作者信息

Yan Hongxia, Tan Yixin, Qiao Fan, Zeng Zhuotong, Shi Yaqian, Zhang Xueqin, Li Lu, Zeng Ting, Zhan Yi, You Ruixuan, He Xinglan, Xiao Rong, Qiu Xiangning

机构信息

Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.

Institution of Dermatology, Central South University, Changsha, 410011, Hunan, China.

出版信息

Sci Rep. 2025 Jul 2;15(1):22563. doi: 10.1038/s41598-025-06589-3.

Abstract

Hematoporphyrin monomethyl ether-photodynamic therapy (HMME-PDT) is a safe and effective treatment for port-wine stain (PWS). Comprehensive methods for predicting HMME-PDT efficacy based on clinical factors are lacking. This study aims to develop and validate two machine learning models to predict the therapeutic effect of HMME-PDT for PWS. We conducted a retrospective study of 131 facial PWS patients treated with single HMME-PDT at the Second Xiangya Hospital from May 2022 to January 2025. The patients were divided into the training cohort and the validation cohort based on the order of their enrollment. Key clinical features were selected using recursive feature elimination (RFE). We developed and validated prediction models with Extreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms. Model performance was assessed using confusion matrix and evaluation metrics. RFE identified the top predictive factors: dermoscopy vascular pattern, immediate fluorescence intensity (IFI) after HMME-PDT, the facial port-wine stain area and severity index score, and age. In the training cohort, both models demonstrated strong predictive performance, with accuracies, F1 scores, and AUC values exceeding 0.8. The XGBoost model outperformed with an accuracy of 0.8750, F1 score of 0.8750, and AUC of 0.8636. In the validation cohort, XGBoost model achieved an accuracy and F1 score both greater than 0.73, with an AUC value of 0.7672. It had the better comprehensive performance. Our findings suggest these models are promising for predicting HMME-PDT efficacy in PWS. This is the first study to explore IFI after HMME-PDT in efficacy assessment.

摘要

血卟啉单甲醚-光动力疗法(HMME-PDT)是治疗鲜红斑痣(PWS)的一种安全有效的方法。目前缺乏基于临床因素预测HMME-PDT疗效的综合方法。本研究旨在开发和验证两种机器学习模型,以预测HMME-PDT治疗PWS的效果。我们对2022年5月至2025年1月在中南大学湘雅二医院接受单次HMME-PDT治疗的131例面部PWS患者进行了回顾性研究。根据患者入组顺序将其分为训练队列和验证队列。使用递归特征消除(RFE)选择关键临床特征。我们使用极端梯度提升(XGBoost)和随机森林(RF)算法开发并验证了预测模型。使用混淆矩阵和评估指标评估模型性能。RFE确定了最重要的预测因素:皮肤镜血管形态、HMME-PDT后的即时荧光强度(IFI)、面部鲜红斑痣面积和严重程度指数评分以及年龄。在训练队列中,两种模型均表现出较强的预测性能,准确率、F1分数和AUC值均超过0.8。XGBoost模型表现更优,准确率为0.8750,F1分数为0.8750,AUC为0.8636。在验证队列中,XGBoost模型的准确率和F1分数均大于0.73,AUC值为0.7672。其综合性能更好。我们的研究结果表明,这些模型在预测HMME-PDT治疗PWS的疗效方面具有前景。这是第一项在疗效评估中探索HMME-PDT后IFI的研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验