文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过计算机模拟和体外实验方法,研究甲氨蝶呤包裹的乳铁蛋白共轭固体脂质纳米粒对侵袭性HCT116细胞中半胱天冬酶-6活性的影响。

Study of caspase-6 activity in aggressive HCT116 cells using methotrexate-encapsulated lactoferrin-conjugated solid lipid nanoparticles via in silico and in vitro approaches.

作者信息

Bhattacharya Sankha, Shinde Ranajit Nivrutti, Beldar Vishal, Khan Rehan

机构信息

School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-Be University, Shirpur, Maharashtra, 425405, India.

Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.

出版信息

Sci Rep. 2025 Jul 1;15(1):20775. doi: 10.1038/s41598-025-08089-w.


DOI:10.1038/s41598-025-08089-w
PMID:40594879
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12214825/
Abstract

Methotrexate-encapsulated solid lipid nanoparticles (MTX-SLNs) and lactoferrin-decorated MTX-loaded nanoparticles (MTX-Lf-SLNs) present a promising strategy for treating colorectal cancer. Among different molecular targets, MTX demonstrated the highest affinity for Caspase-6, exhibiting a docking score of -9.316, while molecular dynamics validated stable interactions. The optimized nanoparticles displayed a spherical shape (~ 160 nm, as observed in TEM images) with a high drug encapsulation efficiency of 85.87% for MTX-SLNs and 80.11% for MTX-Lf-SLNs, which ensured improved stability. Structural analyses using FTIR, DSC confirmed effective drug encapsulation and the binding of lactoferrin. Interestingly, MTX-Lf-SLNs demonstrated higher cytotoxicity (IC50: 0.51 µM) compared to MTX-SLNs and free MTX, inducing apoptosis and stopping cell cycle progression in HCT116 cells. This improved effect was associated with receptor-driven absorption through lactoferrin targeting. Nanoparticulate formulations decreased TNF-α (17.6 ± 2.1 pg/mL), IL-6 (20.2 ± 1.9 pg/mL), and IL-1β (15.4 ± 3.4 pg/mL), thereby reducing immune activation. The nanoparticles exhibited extended, pH-sensitive drug release (70% at pH 5.7) and significant anti-angiogenic effects (~ 70% inhibition in CAM assay). Moreover, they enhanced the balance of reactive oxygen species and safeguarded mitochondria, thereby lowering overall toxicity. Migration assays further validated their capacity to obstruct cancer cell invasiveness, suggesting a potential to impede metastasis. Utilizing the bioactivity of lactoferrin for precise delivery, MTX-Lf-SLNs offer an attractive approach to enhance anti colon cancer efficacy while reducing unwanted side effects.

摘要

甲氨蝶呤包封的固体脂质纳米粒(MTX-SLNs)和乳铁蛋白修饰的载甲氨蝶呤纳米粒(MTX-Lf-SLNs)是治疗结直肠癌的一种有前景的策略。在不同的分子靶点中,MTX对Caspase-6表现出最高的亲和力,对接分数为-9.316,同时分子动力学验证了稳定的相互作用。优化后的纳米粒呈球形(在透射电镜图像中观察到约160nm),MTX-SLNs的药物包封效率高达85.87%,MTX-Lf-SLNs为80.11%,确保了稳定性的提高。使用傅里叶变换红外光谱(FTIR)、差示扫描量热法(DSC)进行的结构分析证实了药物的有效包封以及乳铁蛋白的结合。有趣的是,与MTX-SLNs和游离MTX相比,MTX-Lf-SLNs表现出更高的细胞毒性(IC50:0.51μM),可诱导HCT116细胞凋亡并阻止细胞周期进程。这种改善的效果与通过乳铁蛋白靶向的受体驱动吸收有关。纳米颗粒制剂降低了肿瘤坏死因子-α(TNF-α,17.6±2.1pg/mL)、白细胞介素-6(IL-6,20.2±1.9pg/mL)和白细胞介素-1β(IL-1β,15.4±3.4pg/mL),从而减少免疫激活。纳米粒表现出延长的、pH敏感的药物释放(在pH5.7时为70%)和显著的抗血管生成作用(在鸡胚绒毛尿囊膜试验中约70%的抑制率)。此外,它们增强了活性氧的平衡并保护了线粒体,从而降低了总体毒性。迁移试验进一步验证了它们阻碍癌细胞侵袭的能力,表明其具有抑制转移的潜力。利用乳铁蛋白的生物活性进行精确递送,MTX-Lf-SLNs提供了一种有吸引力的方法,可提高抗结肠癌疗效,同时减少不良副作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/f216f5efb2ac/41598_2025_8089_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/c58e2b09e520/41598_2025_8089_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/9d431f4dfc49/41598_2025_8089_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/9801a60b1be7/41598_2025_8089_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/5ffffda19deb/41598_2025_8089_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/8fa2ae6840de/41598_2025_8089_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/9ce9c4749836/41598_2025_8089_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/64d8db68ca8a/41598_2025_8089_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/b6d14caaeba9/41598_2025_8089_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/714e6384483b/41598_2025_8089_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/09e97400c7a2/41598_2025_8089_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/c52cfacc7beb/41598_2025_8089_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/f216f5efb2ac/41598_2025_8089_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/c58e2b09e520/41598_2025_8089_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/9d431f4dfc49/41598_2025_8089_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/9801a60b1be7/41598_2025_8089_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/5ffffda19deb/41598_2025_8089_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/8fa2ae6840de/41598_2025_8089_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/9ce9c4749836/41598_2025_8089_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/64d8db68ca8a/41598_2025_8089_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/b6d14caaeba9/41598_2025_8089_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/714e6384483b/41598_2025_8089_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/09e97400c7a2/41598_2025_8089_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/c52cfacc7beb/41598_2025_8089_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed2/12214825/f216f5efb2ac/41598_2025_8089_Fig12_HTML.jpg

相似文献

[1]
Study of caspase-6 activity in aggressive HCT116 cells using methotrexate-encapsulated lactoferrin-conjugated solid lipid nanoparticles via in silico and in vitro approaches.

Sci Rep. 2025-7-1

[2]
Carrier-Free Nanomedicine Based on Celastrol and Methotrexate for Synergistic Treatment of Breast Cancer via Folate Targeting.

Int J Nanomedicine. 2025-6-27

[3]
Bovine serum albumin-coated ZIF-8 nanoparticles to enhance antitumor and antimetastatic activity of methotrexate: and study.

J Biomater Sci Polym Ed. 2024-10

[4]
Phyto-Fabrication Mediated Iron Oxide Nanoparticles: A Promising Approach of Antioxidant and Anticancer Activities via and Studies.

Front Biosci (Landmark Ed). 2025-5-30

[5]
Implementation of the Box-Behnken Design in the Development and Optimization of Methotrexate-Loaded Microsponges for Colon Cancer.

Assay Drug Dev Technol. 2025-7

[6]
Intranasal Delivery of Cetrorelix Via Lipid Liquid Crystal Nanoparticles: Characterization and Pharmacokinetic Studies in Rats.

AAPS PharmSciTech. 2025-7-1

[7]
Myristic Acid Solid Lipid Nanoparticles Enhance the Oral Bioavailability and Therapeutic Efficacy of Rifaximin against MRSA Pneumonia.

Curr Drug Deliv. 2024-8-13

[8]
Biologics or tofacitinib for people with rheumatoid arthritis naive to methotrexate: a systematic review and network meta-analysis.

Cochrane Database Syst Rev. 2017-5-8

[9]
Synthesis of a covalently linked bismuthene-graphene heterostructure loaded with mitomycin C for combined radio-thermo-chemotherapy of triple-negative breast cancer.

J Mater Chem B. 2025-7-2

[10]
Targeted treatment of hepatocellular carcinoma with aptamer-guided solid lipid nanoparticles loaded with norcantharidin.

Drug Deliv. 2025-12

本文引用的文献

[1]
Re-examining the optimal extent of lymph node dissection for colon cancer using the lymphadenectomy index.

Sci Rep. 2025-2-24

[2]
Targeted co-delivery nanosystem based on methotrexate, curcumin, and PAMAM dendrimer for improvement of the therapeutic efficacy in cervical cancer.

Sci Rep. 2025-1-13

[3]
A methotrexate labelled dual metal oxide nanocomposite for long-lasting anti-cancer theranostics.

Mater Today Bio. 2024-12-5

[4]
Caspase-8 promotes innate immunity in the Chinese mitten crab by regulating the expression of antimicrobial peptides and apoptosis in hemocyte.

Dev Comp Immunol. 2025-1

[5]
Enhanced efficacy of quercetin and taxifolin encapsulated with pH-responsive injectable BSA hydrogel for targeting triple-negative breast cancer cells.

Int J Biol Macromol. 2025-1

[6]
A quality-by-design approach for optimizing the functionalization of gold nanoparticles onto the surface of doxorubicin-encapsulated liposomes.

Int J Pharm. 2025-1-25

[7]
Design of tunable hyaluronic acid and O'-carboxymethyl chitosan formulations for the minimally invasive delivery of multifunctional therapies targeting rheumatoid arthritis.

Carbohydr Polym. 2025-2-1

[8]
5-Fluorouracil-loaded chitosan nanoparticles conjugated with methotrexate for targeted therapy of colorectal cancer.

Int J Biol Macromol. 2025-1

[9]
Fabrication of lactoferrin-chitosan-etoposide nanoparticles with melatonin via carbodiimide coupling: In-vitro & in-vivo evaluation for colon cancer.

J Control Release. 2025-1-10

[10]
In-silico screening to identify phytochemical inhibitor for hP2X7: A crucial inflammatory cell death mediator in Parkinson's disease.

Comput Biol Chem. 2025-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索