Suppr超能文献

深度学习驱动的癌症基因组学中的药物反应预测及机制洞察

Deep learning-driven drug response prediction and mechanistic insights in cancer genomics.

作者信息

Yu Guili, Fan Qiangqiang

机构信息

Pujiang Community Health Service Center, Shanghai, China.

Pujiang People Institute, Shanghai, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):20824. doi: 10.1038/s41598-025-91571-2.

Abstract

In the field of cancer therapy, the diversity and heterogeneity of cancer genomes in clinical patients complicate and challenge the effective use of non-targeted drugs, as these drugs often fail to address specific genetic events. Recent advancements in large-scale in vitro drug screening assays have generated extensive drug testing and genomic data, providing valuable resources to explore the relationship between genomic features and drug responses. In this study, we developed a deep neural network model, DrugS (Drug Response prediction Utilizing Genomic features Screening), utilizing gene expression and drug testing data from human-derived cancer cell lines to predict cellular responses to drugs. Leveraging gene expression and mutation data, we elucidated potential molecular mechanisms underlying SN-38 resistance. Additionally, we used DrugS to evaluate the effects of drugs on cancer cell proliferation in patient-derived xenograft models. In in vitro combination drug experiments, DrugS revealed that CDK inhibitors, mTOR inhibitors, and apoptosis inhibitors effectively reverse Ibrutinib resistance, providing new therapeutic strategies to overcome drug resistance. Furthermore, we assessed the applicability of the DrugS model in drug screening and patient prognosis evaluation using drug information and gene expression data from The Cancer Genome Atlas. In summary, our study offers a novel approach for drug response prediction and mechanism research in cancer therapy from a genomic perspective and demonstrates the potential applications of the DrugS model in personalized therapy and resistance mechanism elucidation.

摘要

在癌症治疗领域,临床患者癌症基因组的多样性和异质性使非靶向药物的有效使用变得复杂并构成挑战,因为这些药物往往无法应对特定的基因事件。大规模体外药物筛选试验的最新进展产生了大量的药物测试和基因组数据,为探索基因组特征与药物反应之间的关系提供了宝贵资源。在本研究中,我们开发了一种深度神经网络模型DrugS(利用基因组特征筛选的药物反应预测模型),利用来自人源癌细胞系的基因表达和药物测试数据来预测细胞对药物的反应。利用基因表达和突变数据,我们阐明了SN-38耐药性潜在的分子机制。此外,我们使用DrugS评估了药物对患者来源的异种移植模型中癌细胞增殖的影响。在体外联合药物实验中,DrugS显示CDK抑制剂、mTOR抑制剂和凋亡抑制剂可有效逆转依鲁替尼耐药性,为克服耐药性提供了新的治疗策略。此外,我们使用来自癌症基因组图谱的药物信息和基因表达数据评估了DrugS模型在药物筛选和患者预后评估中的适用性。总之,我们的研究从基因组角度为癌症治疗中的药物反应预测和机制研究提供了一种新方法,并展示了DrugS模型在个性化治疗和耐药机制阐明方面的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55c3/12216877/d240e9633058/41598_2025_91571_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验