Suppr超能文献

基于基因表达的癌症药物敏感性推断。

Gene expression based inference of cancer drug sensitivity.

机构信息

Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India.

Australian Prostate Cancer Research Centre-Queensland, Faculty of Health, School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia.

出版信息

Nat Commun. 2022 Sep 27;13(1):5680. doi: 10.1038/s41467-022-33291-z.

Abstract

Inter and intra-tumoral heterogeneity are major stumbling blocks in the treatment of cancer and are responsible for imparting differential drug responses in cancer patients. Recently, the availability of high-throughput screening datasets has paved the way for machine learning based personalized therapy recommendations using the molecular profiles of cancer specimens. In this study, we introduce Precily, a predictive modeling approach to infer treatment response in cancers using gene expression data. In this context, we demonstrate the benefits of considering pathway activity estimates in tandem with drug descriptors as features. We apply Precily on single-cell and bulk RNA sequencing data associated with hundreds of cancer cell lines. We then assess the predictability of treatment outcomes using our in-house prostate cancer cell line and xenografts datasets exposed to differential treatment conditions. Further, we demonstrate the applicability of our approach on patient drug response data from The Cancer Genome Atlas and an independent clinical study describing the treatment journey of three melanoma patients. Our findings highlight the importance of chemo-transcriptomics approaches in cancer treatment selection.

摘要

肿瘤内和肿瘤间异质性是癌症治疗的主要障碍,也是导致癌症患者药物反应差异的原因。最近,高通量筛选数据集的出现为基于机器学习的个性化治疗建议铺平了道路,这些建议使用癌症标本的分子谱。在这项研究中,我们引入了 Precily,这是一种使用基因表达数据推断癌症治疗反应的预测建模方法。在这种情况下,我们证明了同时考虑途径活性估计和药物描述符作为特征的好处。我们将 Precily 应用于与数百种癌细胞系相关的单细胞和批量 RNA 测序数据。然后,我们使用我们内部的前列腺癌细胞系和异种移植物数据集评估不同治疗条件下的治疗结果的可预测性。此外,我们还展示了我们的方法在来自癌症基因组图谱的患者药物反应数据和描述三名黑色素瘤患者治疗过程的独立临床研究中的适用性。我们的研究结果强调了化疗转录组学方法在癌症治疗选择中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/856b/9515171/d2b21d8091e5/41467_2022_33291_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验