Suppr超能文献

阿维巴坦在恢复携带两个bla拷贝和PBP3突变的大肠杆菌敏感性方面的潜在作用。

Potential role of avibactam in restoring susceptibility in Escherichia coli with two copies of bla and PBP3 mutations.

作者信息

Giuliano Simone, Fox Valeria, Ferin Sara, Martini Luca, Angelini Jacopo, Bulfoni Michela, Krpan Beatrice, Gualandi Nicolò, Moreal Chiara, Perno Carlo Federico, Bernaschi Paola, Di Gennaro Ciro, Arcamone Celeste, Turco Sara, Stanziola Maria Cristina, Manzi Rosa, Curcio Francesco, Pipan Corrado, Tascini Carlo

机构信息

Infectious Diseases Clinic, Azienda Sanitaria Universitaria Friuli Centrale, 33100, Udine, Italy.

Multimodal Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.

出版信息

Sci Rep. 2025 Jul 1;15(1):21161. doi: 10.1038/s41598-025-07624-z.

Abstract

UNLABELLED

The emergence of carbapenemase-producing represents a significant clinical challenge. Resistance mechanisms involve carbapenemase production, porin and efflux pump alterations, penicillin-binding protein (PBP) modifications, and biofilm formation. This study characterizes a KPC- and a concurrent isolate harboring the same resistance genes, with also exhibiting PBP3 mutations. Whole-genome sequencing and plasmid analysis identified an IncFII(K) plasmid carrying the gene. Both strains shared two resistance genes (, ). contained a single copy of on Tn, whereas carried two copies on separate Tn transposons. Plasmid reconstruction revealed high homology (99.85%) with plasmid pECAZ147_KPC and plasmid pKPC. This suggests that transposon-mediated transfer between the two strains may have occurred via the same plasmid. Moreover, harbored PBP3 mutations (A233T, I332V), which have been previously linked to increased ceftazidime MICs and two missense mutations in . Despite carrying two copies of the gene, along with and PBP3 mutations, our isolate did not exhibit a significant increase in ceftazidime/avibactam MIC. This phenomenon could be explained by avibactam’s ability to bind to PBP2, potentially compensating for the reduced binding of ceftazidime to the mutated PBP3.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1038/s41598-025-07624-z.

摘要

未标记

产碳青霉烯酶菌株的出现是一个重大的临床挑战。耐药机制包括碳青霉烯酶的产生、孔蛋白和外排泵的改变、青霉素结合蛋白(PBP)的修饰以及生物膜的形成。本研究对一株携带相同耐药基因的KPC菌株和一株同时存在的菌株进行了表征,该菌株还表现出PBP3突变。全基因组测序和质粒分析鉴定出一个携带该基因的IncFII(K)质粒。两株菌株共有两个耐药基因(,)。菌株在Tn上含有一个单拷贝的,而菌株在不同的Tn转座子上携带两个拷贝。质粒重建显示与质粒pECAZ147_KPC和质粒pKPC具有高度同源性(99.85%)。这表明两株菌株之间转座子介导的转移可能是通过同一质粒发生的。此外,菌株存在PBP3突变(A233T,I332V),此前已发现这些突变与头孢他啶最低抑菌浓度(MIC)升高有关,并且在中存在两个错义突变。尽管携带两个拷贝的基因,以及和PBP3突变,但我们的菌株头孢他啶/阿维巴坦MIC并未显著升高。这种现象可以通过阿维巴坦与PBP2结合的能力来解释,这可能补偿了头孢他啶与突变的PBP3结合减少的情况。

补充信息

在线版本包含可在10.1038/s41598-025-07624-z获取的补充材料。

相似文献

5
Evolution of ceftazidime-avibactam resistance driven by variation in to during treatment of ST11-K64 hypervirulent .
Front Cell Infect Microbiol. 2025 Jun 6;15:1607127. doi: 10.3389/fcimb.2025.1607127. eCollection 2025.
6
Identification of KPC-112 from an ST15 Klebsiella pneumoniae Strain Conferring Resistance to Ceftazidime-Avibactam.
mSphere. 2022 Dec 21;7(6):e0048722. doi: 10.1128/msphere.00487-22. Epub 2022 Nov 14.
7
KPC-2 allelic variants in isolates resistant to ceftazidime-avibactam from Argentina: , , and .
Microbiol Spectr. 2024 Mar 5;12(3):e0411123. doi: 10.1128/spectrum.04111-23. Epub 2024 Feb 6.
8
Double copies quadrupled minimum inhibitory concentration of ceftazidime-avibactam in hospital-derived .
Microbiol Spectr. 2024 Aug 6;12(8):e0033124. doi: 10.1128/spectrum.00331-24. Epub 2024 Jul 10.
9
Characterization of a -carrying plasmid in a clinical isolate of belonging to the emerging successful clone ST147.
Microbiol Spectr. 2025 Jul;13(7):e0233824. doi: 10.1128/spectrum.02338-24. Epub 2025 May 23.
10
Complex evolutionary trajectories in vivo of two novel KPC variants conferring ceftazidime-avibactam resistance.
Int J Antimicrob Agents. 2024 Sep;64(3):107265. doi: 10.1016/j.ijantimicag.2024.107265. Epub 2024 Jul 3.

本文引用的文献

2
Fighting resistance with redundancy: a path forward for treating antimicrobial-resistant infections?
Antimicrob Agents Chemother. 2025 Apr 2;69(4):e0012125. doi: 10.1128/aac.00121-25. Epub 2025 Mar 14.
5
Solu: a cloud platform for real-time genomic pathogen surveillance.
BMC Bioinformatics. 2025 Jan 13;26(1):12. doi: 10.1186/s12859-024-06005-z.
6
Global emergence of Escherichia coli with PBP3 insertions.
J Antimicrob Chemother. 2025 Jan 3;80(1):178-181. doi: 10.1093/jac/dkae393.
7
Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050.
Lancet. 2024 Sep 28;404(10459):1199-1226. doi: 10.1016/S0140-6736(24)01867-1. Epub 2024 Sep 16.
9
A widespread single amino acid mutation in AcrA reduces tigecycline susceptibility in .
Microbiol Spectr. 2024 Jan 11;12(1):e0203023. doi: 10.1128/spectrum.02030-23. Epub 2023 Nov 30.
10
Plasmid genomic epidemiology of carbapenemase-producing in Canada, 2010-2021.
Antimicrob Agents Chemother. 2023 Dec 14;67(12):e0086023. doi: 10.1128/aac.00860-23. Epub 2023 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验