Alsaab Hashem O
Department of Pharmaceutics and Pharmaceutical Technology, Taif University, 21944, Taif, Saudi Arabia.
Sci Rep. 2025 Jul 1;15(1):21452. doi: 10.1038/s41598-025-06924-8.
This study investigates the electronic properties of Fluorenone (A) and Fluorenol (B) for potential applications in molecular nanoelectronics. Using Density Functional Theory (DFT), Quantum Theory of Atoms in Molecules (QTAIM), and Landauer transport theory, we analyze the impact of electric fields on their conductivity and structural stability. Fluorenone, characterized by its conjugated carbonyl group, demonstrates electron-withdrawing capabilities, whereas Fluorenol, with its hydroxyl group, exhibits tunable electronic properties through hydrogen bonding. Computational modeling at the CAM-B3LYP/6-311 + G level reveals that Fluorenol consistently exhibits a smaller HOMO-LUMO gap than Fluorenone, suggesting superior charge transport efficiency. Density of States (DOS) and UV-Vis spectrum confirm these trends. Additionally, under varying electric field intensities, both molecules exhibit structural stability with minor length variations, supporting their suitability for nanoelectronic applications. The I-V characteristics show that Fluorenol-based systems (Au-B-Au) demonstrate higher conductivity than Fluorenone-based systems (Au-A-Au), attributed to enhanced charge delocalization. Furthermore, Joule and Peltier's heating analysis confirms lower heat dissipation in Fluorenol, making it an ideal candidate for thermally stable nanoelectronic devices, including medical implants. Electron Localization Function (ELF) and Localized Orbital Locator (LOL) analyses further validate Fluorenol's superior charge transport properties. These findings highlight Fluorenol as a promising material for molecular wires and next-generation nanoelectronic applications.
本研究调查了芴酮(A)和芴醇(B)的电子特性,以探讨其在分子纳米电子学中的潜在应用。我们运用密度泛函理论(DFT)、分子中的原子量子理论(QTAIM)和朗道尔输运理论,分析了电场对其导电性和结构稳定性的影响。芴酮具有共轭羰基,表现出吸电子能力,而芴醇带有羟基,通过氢键展现出可调节的电子特性。在CAM - B3LYP/6 - 311 + G水平上的计算建模表明,芴醇的最高占据分子轨道(HOMO)与最低未占据分子轨道(LUMO)之间的能隙始终比芴酮小,这表明其电荷传输效率更高。态密度(DOS)和紫外 - 可见光谱证实了这些趋势。此外,在不同电场强度下,两种分子均表现出结构稳定性,长度变化较小,这支持了它们在纳米电子应用中的适用性。电流 - 电压(I - V)特性表明,基于芴醇的体系(Au - B - Au)比基于芴酮的体系(Au - A - Au)具有更高的导电性,这归因于电荷离域增强。此外,焦耳热和珀尔帖热分析证实芴醇的热耗散较低,使其成为热稳定纳米电子器件(包括医疗植入物)的理想候选材料。电子定域函数(ELF)和定域轨道定位器(LOL)分析进一步验证了芴醇卓越的电荷传输性能。这些发现突出了芴醇作为分子导线和下一代纳米电子应用的有前途材料的地位。