Ibrahim Shaikh Imran, Parambil Ajith Manayil, Jha Neha, Tomar Anuj Kumar, Rajamani Paulraj, Jian Xiao, Priyadarshini Eepsita, Chuxiao Shao
Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, 323000, Zhejiang, China.
Nanotechnology Centre, Centre for Energy and Environmental Technologies, VSB - Technical University of Ostrava, listopadu 2172/15, Ostrava, 70800, Czech Republic.
Sci Rep. 2025 Jul 1;15(1):21407. doi: 10.1038/s41598-025-07583-5.
The escalating prevalence of antibiotic-resistant infections and implant-related complications caused by biofilm-forming pathogens from the ESKAPE group, as identified by the World Health Organization (WHO), underscores the urgent need for innovative anti-biofilm strategies. Their occurrence on medical implants & prosthetic devices, as well as nosocomial infections in co-morbid patients, has become a global concern in the healthcare sector. In response, we investigated the efficacy of as-synthesized ZnS quantum dots (ZnS QD) and novel Au@ZnS nanoconjugates (Au@ZnS NC) against a spectrum of ESKAPE pathogens. The present study aimed to elucidate their antibacterial and anti-biofilm efficacy, focusing on Acinetobacter baumannii, Enterobacter cloacae, Staphylococcus epidermidis, Enterococcus faecium, Proteus mirabilis, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus and Enterobacter aerogenes pathogens. The novel synthesis and application of ZnS QD and Au@ZnS core-shell NC demonstrate exceptional anti-biofilm efficacy, stability, and solubility in aqueous environments. Utilizing minimum inhibitory concentration (MIC) assays, tube dilution, and biofilm formation assay, we noticed a significant reduction in biofilm formation and extracellular polymeric substances (EPS) production upon treatment with Au@ZnS NC, even at low concentrations. Further investigations, including cell permeability assay, reactive oxygen species analysis, and comet analysis, demonstrated that the Au@ZnS NC induced oxidative stress, destabilizing cell structure, macromolecule destruction, and DNA strand breakage. Notably, Au@ZnS nanoconjugates effectively inhibited biofilm formation within 24 h across all tested strains, outperforming ZnS quantum dots. This research highlights the potential of Au@ZnS nanoconjugates to revolutionize infection control on medical devices and implants, offering a promising solution to the global healthcare challenge posed by biofilm-forming pathogens as we also observed minimal bacterial colonization on Au@ZnS treated urinary catheters.
世界卫生组织(WHO)认定,由ESKAPE组中形成生物膜的病原体导致的抗生素耐药性感染和植入物相关并发症的患病率不断上升,这凸显了对创新抗生物膜策略的迫切需求。它们在医疗植入物和假体装置上的出现,以及合并症患者的医院感染,已成为医疗保健领域的全球关注点。作为回应,我们研究了合成的硫化锌量子点(ZnS QD)和新型金@硫化锌纳米共轭物(Au@ZnS NC)对一系列ESKAPE病原体的功效。本研究旨在阐明它们的抗菌和抗生物膜功效,重点关注鲍曼不动杆菌、阴沟肠杆菌、表皮葡萄球菌、粪肠球菌、奇异变形杆菌、铜绿假单胞菌、屎肠球菌、金黄色葡萄球菌和产气肠杆菌病原体。ZnS QD和Au@ZnS核壳NC的新型合成及应用在水性环境中表现出卓越的抗生物膜功效、稳定性和溶解性。通过最低抑菌浓度(MIC)测定、试管稀释和生物膜形成测定,我们注意到即使在低浓度下,用Au@ZnS NC处理后生物膜形成和细胞外聚合物(EPS)产生也显著减少。进一步的研究,包括细胞通透性测定、活性氧分析和彗星分析,表明Au@ZnS NC诱导氧化应激,破坏细胞结构、大分子并导致DNA链断裂。值得注意的是,Au@ZnS纳米共轭物在24小时内有效抑制了所有测试菌株的生物膜形成,优于ZnS量子点。这项研究突出了Au@ZnS纳米共轭物在革新医疗器械和植入物感染控制方面的潜力,为形成生物膜的病原体给全球医疗保健带来的挑战提供了一个有前景的解决方案,因为我们还观察到在经Au@ZnS处理的导尿管上细菌定植极少。