Suppr超能文献

用于估算水培系统中生菜(Lactuca sativa)生长和资源消耗的混合机器学习与基于物理的模型

Hybrid machine learning and physics-based model for estimating lettuce (Lactuca sativa) growth and resource consumption in aeroponic systems.

作者信息

Fasciolo Benedetta, Grasso Nicolò, Bruno Giulia, Chiabert Paolo

机构信息

Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.

出版信息

Sci Rep. 2025 Jul 2;15(1):23063. doi: 10.1038/s41598-025-02763-9.

Abstract

As the global population is expected to reach 10.3 billion by the mid-2080s, optimizing agricultural production and resource management is crucial. Climate change and environmental degradation further complicate these challenges, impacting crop productivity and food security. Traditional farming methods struggle with efficiently managing nutrients and water while ensuring high-quality products, leading to resource wastage and food safety concerns. This study aims to develop a hybrid model combining machine learning and physics-based techniques to predict fresh weight, leaf area, nitrate levels, and water consumption in lettuce grown in aeroponic systems, thereby enhancing resource management and product quality. We integrated a physics-based model with machine learning algorithms to create a dynamic hybrid framework. The model was validated with real-time data from aeroponic systems, showing good predictive performance, particularly for fresh weight and total leaf area. In contrast, predictions of nitrate content and water consumption were less accurate, due in part to smaller training datasets and limitations of the physics-based component under soilless conditions. Despite these challenges, the hybrid model offers a promising solution for optimizing controlled environment agriculture, addressing critical challenges in modern agriculture by improving efficiency and sustainability.

摘要

预计到2080年代中期全球人口将达到103亿,因此优化农业生产和资源管理至关重要。气候变化和环境退化使这些挑战更加复杂,影响作物生产力和粮食安全。传统耕作方法在有效管理养分和水的同时还要确保产品质量,面临困难,导致资源浪费和食品安全问题。本研究旨在开发一种结合机器学习和基于物理的技术的混合模型,以预测气培系统中种植的生菜的鲜重、叶面积、硝酸盐水平和耗水量,从而加强资源管理并提高产品质量。我们将基于物理的模型与机器学习算法相结合,创建了一个动态混合框架。该模型通过气培系统的实时数据进行了验证,显示出良好的预测性能,尤其是对于鲜重和总叶面积。相比之下,硝酸盐含量和耗水量的预测准确性较低,部分原因是训练数据集较小以及无土条件下基于物理的组件存在局限性。尽管存在这些挑战,该混合模型为优化可控环境农业提供了一个有前景的解决方案,通过提高效率和可持续性来应对现代农业中的关键挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验