He Tao, Li Meijin, Jin Dong
School of Intelligent Manufacturing, Wenzhou Polytechnic, Wenzhou, China.
School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou, China.
Front Plant Sci. 2025 Jun 9;16:1575796. doi: 10.3389/fpls.2025.1575796. eCollection 2025.
Precision agriculture is revolutionizing modern farming by integrating data-driven methodologies to enhance crop productivity while promoting sustainability. Traditional time series models struggle with complex agricultural data due to heterogeneity, high dimensionality, and strong spatial-temporal dependencies. These limitations hinder their ability to provide actionable insights for resource optimization and environmental protection.
To tackle these difficulties, this research puts forward a new deep-learning-based architecture for time-series prediction that is customized for precise field crop protection. At its core, our Spatially-Aware Data Fusion Network (SADF-Net) integrates multi-modal data sources, such as satellite imagery, IoT sensor readings, and meteorological forecasts, into a unified predictive model. By combining convolutional layers for spatial feature extraction, recurrent neural networks for temporal modeling, and attention mechanisms for data fusion, SADF-Net captures intricate spatial-temporal dependencies while ensuring robustness to noisy and incomplete data. We introduce the Resource-Aware Adaptive Decision Algorithm (RAADA), which leverages reinforcement learning to translate SADF-Net's predictions into optimized strategies for resource allocation, such as irrigation scheduling and pest control. RAADA dynamically adapts decisions based on real-time field responses, ensuring efficiency and sustainability.
The experimental findings obtained from large-scale agricultural datasets show that our framework far exceeds the existing most advanced methods in terms of the accuracy of yield prediction, resource optimization, and environmental impact mitigation.
This research offers a transformative solution for precision agriculture, aligning with the pressing need for advanced tools in sustainable crop management.
精准农业通过整合数据驱动的方法来提高作物产量并促进可持续发展,正在彻底改变现代农业。传统的时间序列模型由于数据的异质性、高维度性和强烈的时空依赖性,在处理复杂的农业数据时面临困难。这些限制阻碍了它们为资源优化和环境保护提供可操作见解的能力。
为了解决这些难题,本研究提出了一种新的基于深度学习的时间序列预测架构,该架构是为精确的田间作物保护量身定制的。我们的空间感知数据融合网络(SADF-Net)的核心是将多模态数据源,如卫星图像、物联网传感器读数和气象预报,集成到一个统一的预测模型中。通过结合用于空间特征提取的卷积层、用于时间建模的递归神经网络和用于数据融合的注意力机制,SADF-Net捕捉复杂的时空依赖性,同时确保对噪声和不完整数据的鲁棒性。我们引入了资源感知自适应决策算法(RAADA),该算法利用强化学习将SADF-Net的预测转化为资源分配的优化策略,如灌溉调度和病虫害控制。RAADA根据实时田间响应动态调整决策,确保效率和可持续性。
从大规模农业数据集中获得的实验结果表明,我们的框架在产量预测、资源优化和减轻环境影响的准确性方面远远超过了现有的最先进方法。
本研究为精准农业提供了一种变革性的解决方案,符合可持续作物管理对先进工具的迫切需求。