Rahimi Shahab, Semiromi Ebrahim Heidari, Mostafaei Alireza
Faculty of Physics, University of Kashan, kilometer 6, Allameh Qutb Rawandi Blvd, Kashan, Iran.
Department of Physics, University of Tehran, North Kargar Ave, Tehran, 14395547, Iran.
Sci Rep. 2025 Jul 1;15(1):21690. doi: 10.1038/s41598-025-04556-6.
In this study, we investigate the effects of electron-electron interactions on the structural, electronic, and optical properties of the (2D)MXenes Zr₂CO₂ and Zr₂CF₂. The objective is to enhance the understanding of these interactions and their impact on the electronic and optical characteristics of these monolayers, which have significant potential for various nanotechnology applications. Using the Quantum ESPRESSO package and advanced computational methods including density functional theory (DFT), the generalized gradient approximation (GGA), and the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, the optimal Hubbard U parameters for Zr atoms in the semiconductor Zr₂CO₂ and the metallic Zr₂CF₂ MXenes were determined. For ultrasoft Pseudopotentials (USPP), these values were calculated to be 2.889 eV and 3.2680 eV, respectively, while for the harder Martins-Troullier (MT) Pseudopotentials, they were 3.174 eV and 3.840 eV, respectively. Subsequently, we analyzed the band structures and the electronic and optical properties characteristics of these MXenes. By accounting for electron-electron interactions for the Zr₂CO₂ semiconductor monolayer, the indirect bandgap increased by 0.311 eV and 0.276 eV when using (USPP) and (MT) Pseudopotentials, respectively. Additionally, high optical absorption coefficients were observed in the visible and ultraviolet regions. In contrast, the bandgap in the metallic Zr₂CF₂ monolayer shifted from a negative value toward zero, resulting in values of 0.085 eV and 0.031 eV for (USPP) and (MT) Pseudopotentials, respectively. MXene Zr₂CF₂ emerges as a promising candidate for absorption and conductivity in the infrared region, which is vital for various applications. These findings provide a deeper understanding of the electronic and optical behavior of the Zr₂CO₂ and Zr₂CF₂ (2D) monolayers and pave the way for developing novel applications in electronic and optical technologies.
在本研究中,我们研究了电子 - 电子相互作用对(二维)MXenes材料Zr₂CO₂和Zr₂CF₂的结构、电子和光学性质的影响。目的是加深对这些相互作用及其对这些单层材料的电子和光学特性影响的理解,这些单层材料在各种纳米技术应用中具有巨大潜力。使用Quantum ESPRESSO软件包以及包括密度泛函理论(DFT)、广义梯度近似(GGA)和Perdew - Burke - Ernzerhof(PBE)交换关联泛函在内的先进计算方法,确定了半导体Zr₂CO₂和金属Zr₂CF₂ MXenes中Zr原子的最佳哈伯德U参数。对于超软赝势(USPP),这些值分别计算为2.889 eV和3.2680 eV,而对于更硬的Martins - Troullier(MT)赝势,它们分别为3.174 eV和3.840 eV。随后,我们分析了这些MXenes材料的能带结构以及电子和光学性质特征。通过考虑Zr₂CO₂半导体单层的电子 - 电子相互作用,当使用(USPP)和(MT)赝势时,间接带隙分别增加了0.311 eV和0.276 eV。此外,在可见光和紫外区域观察到了高光学吸收系数。相比之下,金属Zr₂CF₂单层的带隙从负值向零移动,对于(USPP)和(MT)赝势,其值分别为0.085 eV和0.031 eV。MXene Zr₂CF₂成为红外区域吸收和传导的有前途的候选材料,这对各种应用至关重要。这些发现为深入理解Zr₂CO₂和Zr₂CF₂(二维)单层的电子和光学行为提供了依据,并为电子和光学技术中新型应用的开发铺平了道路。