Xu Xiaomin, Zhang Tianrong
Hangzhou City University, Huzhou Street, Hangzhou, Zhejiang, China.
Zhejiang Shuren University, No.8 Shuren Street, Hangzhou, Zhejiang, China.
Sci Rep. 2025 Jul 1;15(1):22028. doi: 10.1038/s41598-025-04681-2.
This study aims to enhance the accuracy and stability of classifying students' mental health status in online learning environments using an intelligent model built on the Boosting algorithm and LIWC (Linguistic Inquiry and Word Count) features. The model extracts emotional and psychological features from online learning platforms using the LIWC dictionary and integrates multiple weak classifiers using the Boosting algorithm. The performance of the model is enhanced with the Antlion Optimization Algorithm. Experimental results show that the model's classification accuracy ranges between 98 and 99%, effectively reducing misclassification rates and accurately identifying students experiencing high stress and anxiety. The model enhances mental health status classification and real-time monitoring accuracy, offering critical support for targeted psychological interventions in education.
本研究旨在通过基于提升算法和LIWC(语言查询与字数统计)特征构建的智能模型,提高在线学习环境中对学生心理健康状况分类的准确性和稳定性。该模型使用LIWC词典从在线学习平台中提取情感和心理特征,并使用提升算法集成多个弱分类器。通过蚁狮优化算法提高了模型的性能。实验结果表明,该模型的分类准确率在98%至99%之间,有效降低了误分类率,并准确识别出处于高压力和焦虑状态的学生。该模型提高了心理健康状况分类和实时监测的准确性,为教育中的针对性心理干预提供了关键支持。