文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

CoO/CdAlO纳米复合材料在可见光照射下对有机染料进行光催化净化的协同效应。

Synergistic effect of CoO/CdAlO nanocomposite for photocatalytic decontamination of organic dyes under visible light irradiation.

作者信息

Araei Zahra, Ghorbani Mohsen

机构信息

Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Shariati Ave, Babol, 47148-71167, Iran.

出版信息

Sci Rep. 2025 Jul 2;15(1):22454. doi: 10.1038/s41598-025-07095-2.


DOI:10.1038/s41598-025-07095-2
PMID:40596534
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12215255/
Abstract

Water supply and the removal of contaminants are critical challenges for modern societies. Various techniques have been developed to treat industrial wastewater. This study synthesized a Co3O4/CdAl2O4 nanocomposite using a hydrothermal method to remove Direct Blue and Basic Yellow organic dyes from aqueous media. The nanocomposite was characterized through FTIR, XRD, FESEM, EDX, TEM, PL, and UV-DRS spectroscopy to assess its physical, chemical, and optical properties, including morphology, particle size, crystalline structure, chemical composition, and band gap. DRS analysis revealed that the band gaps of CoO, CdAlO, and the synthesized nanocomposite were 1.5 eV, 3.66 eV, and 2.4 eV respectively. The formation of the heterogeneous CoO/CdAlO structure reduced the recombination rate compared to pure CoO and CdAlO samples. The study examined how operational parameters such as pH, contact time, initial dye concentration, and catalyst dosage affected dye removal efficiency. Optimal removal efficiency for Direct Blue was achieved at pH 2 and for Basic Yellow at pH 12 with a dye concentration of 10 ppm in a 20 mL solution using a catalyst dosage of 0.01 g. Maximum removal efficiencies were 91% for Direct Blue and 86% for Basic Yellow. Kinetic studies showed that the dye removal process followed pseudo-first-order kinetics indicative of a surface-controlled reaction. The experimental data fit well with this model, allowing calculation of the reaction rate constant and activation energy determination. The regression coefficients were 0.992 for Direct Blue and 0.991 for Basic Yellow with rate constants of 0.00379 s and 0.00125 s respectively. The photocatalytic regeneration results indicate that the synthesized nanocomposite demonstrates excellent reusability for up to four cycles, achieving final degradation rates of 80% and 74% for Direct Blue and Basic Yellow, respectively. Mechanistic studies reveal that superoxide radicals are the primary reactive species, serving as powerful oxidants that break down the chemical bonds of pollutant molecules. This process results in bond cleavage and ultimately mineralizes pollutants into simpler compounds like water and carbon dioxide. Consequently, the cobalt oxide/cadmium alumina nanocomposite, with its superior photocatalytic properties and high stability, shows significant potential for treating industrial wastewater containing organic dyes.

摘要

供水和去除污染物是现代社会面临的关键挑战。人们已经开发出各种技术来处理工业废水。本研究采用水热法合成了一种Co3O4/CdAl2O4纳米复合材料,用于从水介质中去除直接蓝和碱性黄有机染料。通过傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、能谱分析(EDX)、透射电子显微镜(TEM)、光致发光光谱(PL)和紫外可见漫反射光谱(UV-DRS)对该纳米复合材料进行了表征,以评估其物理、化学和光学性质,包括形态、粒径、晶体结构、化学成分和带隙。漫反射光谱分析表明,CoO、CdAlO和合成的纳米复合材料的带隙分别为1.5电子伏特、3.66电子伏特和2.4电子伏特。与纯CoO和CdAlO样品相比,异质CoO/CdAlO结构的形成降低了复合率。该研究考察了pH值、接触时间、初始染料浓度和催化剂用量等操作参数对染料去除效率的影响。在20毫升溶液中,使用0.01克催化剂用量,染料浓度为10 ppm时,直接蓝在pH值为2时达到最佳去除效率,碱性黄在pH值为12时达到最佳去除效率。直接蓝的最大去除效率为91%,碱性黄的最大去除效率为86%。动力学研究表明,染料去除过程遵循准一级动力学,表明是表面控制反应。实验数据与该模型拟合良好,从而可以计算反应速率常数并确定活化能。直接蓝的回归系数为0.992,碱性黄的回归系数为0.991,速率常数分别为0.00379 s和0.00125 s。光催化再生结果表明,合成的纳米复合材料在多达四个循环中表现出优异的可重复使用性,直接蓝和碱性黄的最终降解率分别达到80%和74%。机理研究表明,超氧自由基是主要的活性物种,作为强大的氧化剂分解污染物分子的化学键。这个过程导致键断裂,最终将污染物矿化为水和二氧化碳等更简单的化合物。因此,氧化钴/镉铝纳米复合材料具有优异的光催化性能和高稳定性,在处理含有机染料的工业废水方面显示出巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/7ca5fa3810a8/41598_2025_7095_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/87c98de8fce1/41598_2025_7095_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/ce9649f40cd6/41598_2025_7095_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/23f804802e6d/41598_2025_7095_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/78adcbe89e33/41598_2025_7095_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/238e9d6dca7b/41598_2025_7095_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/7c5143ab6326/41598_2025_7095_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/f2a60cd4c522/41598_2025_7095_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/b995f8f43be3/41598_2025_7095_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/b20698d923f9/41598_2025_7095_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/4d94c77f9417/41598_2025_7095_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/2fdb3c96906b/41598_2025_7095_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/866ea0a675d5/41598_2025_7095_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/ab956eaa1e07/41598_2025_7095_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/6c1953931e16/41598_2025_7095_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/7ca5fa3810a8/41598_2025_7095_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/87c98de8fce1/41598_2025_7095_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/ce9649f40cd6/41598_2025_7095_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/23f804802e6d/41598_2025_7095_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/78adcbe89e33/41598_2025_7095_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/238e9d6dca7b/41598_2025_7095_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/7c5143ab6326/41598_2025_7095_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/f2a60cd4c522/41598_2025_7095_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/b995f8f43be3/41598_2025_7095_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/b20698d923f9/41598_2025_7095_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/4d94c77f9417/41598_2025_7095_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/2fdb3c96906b/41598_2025_7095_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/866ea0a675d5/41598_2025_7095_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/ab956eaa1e07/41598_2025_7095_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/6c1953931e16/41598_2025_7095_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/12215255/7ca5fa3810a8/41598_2025_7095_Fig15_HTML.jpg

相似文献

[1]
Synergistic effect of CoO/CdAlO nanocomposite for photocatalytic decontamination of organic dyes under visible light irradiation.

Sci Rep. 2025-7-2

[2]
Synthesis and optimization of silver-modified BiOCl/CuBiO heterostructure composite as an efficient visible light photocatalyst against reactive green 5 and turquoise blue dyes.

Environ Sci Pollut Res Int. 2025-6

[3]
Heterojunction configuration-specific photocatalytic degradation of methyl orange and methylene blue dyes using ZnO-based nanocomposites.

J Adv Res. 2025-6-10

[4]
Chitosan/ferrous oxide nanocomposite for the sunlight-driven photocatalytic degradation of organic azo dye in aqueous solutions and aquaculture effluents wastewater.

Sci Rep. 2025-7-2

[5]
Ag₃PO₄@ZnO kraft lignin composite for optimized photocatalytic degradation of methylene blue using response surface methodology.

Sci Rep. 2025-6-20

[6]
Green Synthesis of Tin Oxide (SnO) Nanoparticles Using Ginger Extracts for Photocatalytic Degradation of Organic Dyes in Wastewater.

Appl Biochem Biotechnol. 2025-6-27

[7]
Concurrent photocatalytic degradation of organic pollutants using smart magnetically cellulose-based metal organic framework nanocomposite.

Sci Rep. 2025-6-20

[8]
Adsorptive performance of sustainable biosorbent from shell powder for toxic methylene blue dye removal: desirability functions and dye uptake mechanism.

Int J Phytoremediation. 2025

[9]
Photocatalytic degradation of rhodamine B using zinc oxide/silver nanowire nanocomposite films under ultraviolet irradiation.

R Soc Open Sci. 2025-6-18

[10]
Visible-light-driven removal of mixed dye pollutants by a novel ZnO/CNT/GO ternary nanocomposite: Synergistic degradation of Congo red and methylene blue.

Environ Res. 2025-6-14

本文引用的文献

[1]
Design of novel Z-scheme g-CN/TiO/CuCoO heterojunctions for efficient visible light-driven photocatalyic degradation of rhodamine B.

Sci Rep. 2024-10-9

[2]
ZnO@ activated carbon derived from wood sawdust as adsorbent for removal of methyl red and methyl orange from aqueous solutions.

Sci Rep. 2024-3-5

[3]
Rational optimization of g-CN/CoO nanocomposite for enhanced photodegradation of Rhodamine B dye under visible light.

Environ Sci Pollut Res Int. 2023-5

[4]
Strategies for ameliorating the photodegradation efficiency of Mn-doped CdAlO nanoparticles for the toxic dyes under visible light illumination.

Chemosphere. 2023-4

[5]
Yolk-shell Co O @Fe O /C Nanocomposites as a Heterogeneous Fenton-like Catalyst for Organic Dye Removal.

Chemistry. 2023-3-1

[6]
A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook.

Chemosphere. 2022-12

[7]
Robust visible light active CoNiO-BiFeO-NiS ternary nanocomposite for photo-fenton degradation of rhodamine B and methyl orange: Kinetics, degradation pathway and toxicity assessment.

J Environ Manage. 2022-9-1

[8]
Designing Z-scheme AgIO nanorod embedded with BiS nanoflakes for expeditious visible light photodegradation of congo red and rhodamine B.

Chemosphere. 2022-5

[9]
Recent developments in architecturing the g-CN based nanostructured photocatalysts: Synthesis, modifications and applications in water treatment.

Chemosphere. 2022-3

[10]
Fabrication of NiFeO magnetic nanoparticles loaded on activated carbon as novel nanoadsorbent for Direct Red 31 and Direct Blue 78 adsorption.

Environ Technol. 2018-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索