Suppr超能文献

突变丰度能否评估BRAF阳性甲状腺乳头状癌的生物学行为?

Can mutation abundance assess the biological behavior of BRAF-positive papillary thyroid carcinoma?

作者信息

Ni Yeqin, Song Ping, Lin Xiangfeng, Shi Jingjing, Shi Qian, Li Yuanhui, Zhu Siyu, Zhou Tianhan, Xun Yanping, Zhang Shirong, Ren Xingchang, Lu Kaining, Wu Fan, Wang Wei, Zhao Pan, Zhou Rongjing, Zhang Wenhua, Li Dandan, Zhang Jiaoping, Chen Chuanghua, Mao Linlin, Zhou Li, Pan Gang, Peng You, Yu Yunxian, Chen Yuying, Ni Rong, Luo Guhan, Zhang Yu, Fang Jugao, Zheng Haitao, Luo Dingcun

机构信息

Department of Surgical Oncology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, No. 261, Huansha Road, Shangcheng district, Hangzhou, Zhejiang, 310006, China.

Department of Thyroid Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, Yuhuangding East Road, Zhifu District, Yantai, Shandong, 264000, China.

出版信息

J Transl Med. 2025 Jul 1;23(1):704. doi: 10.1186/s12967-025-06493-4.

Abstract

BACKGROUND

BRAF mutation is the most common genetic change in papillary thyroid carcinoma (PTC). Nevertheless, the association between BRAF mutation status and abundance and the biological behavior of PTC is unclear. Thus, this study investigated whether BRAF mutation status and abundance are related to PTC biological behavior and whether BRAF mutation abundance can be used to further stratify risk.

METHODS

Postoperative formalin-fixed paraffin-embedded (FFPE) specimens from 528 PTC patients formed the retrospective cohort, and preoperative fine-needle aspiration (FNA) specimens from 167 PTC patients formed the prospective cohort. Furthermore, 74 FNA specimens were collected from two additional hospitals to form the external cohort. Droplet digital polymerase chain reaction (ddPCR) was used to detect BRAF mutation status and abundance in the two types of specimens. The relationship between BRAF mutation status and abundance and PTC biological behavior was analyzed in the cohorts. To predict BRAF-positive PTC risk stratification, we constructed postoperative clinicopathological models (Model A, retrospective; Model B, prospective), a preoperative clinical model (Model C), and a fusion model combining BRAF mutation abundance and preoperative clinical information (Model D). The area under the curve (AUC) values were used to assess the performance of these models.

RESULTS

Univariate and multivariate analysis of the retrospective, prospective and external cohorts indicated that BRAF mutation abundance, not status, was significantly associated with PTC biological behavior. An increase in BRAF mutation abundance was significantly associated with an increased risk of BRAF-positive PTC. The AUCs of model A, model B, model C, and model D in the validation sets were 0.89 (95% CI, 0.83-0.94), 0.89 (95% CI, 0.83-0.99), 0.65 (95% CI, 0.48-0.82), and 0.86 (95% CI, 0.75-0.98), respectively. The AUCs of model B, model C, and model D in the external sets were 0.78(95% CI, 0.67-0.88), 0.61(95% CI, 0.48-0.75) and 0.82 (95% CI, 0.71-0.93), respectively. The AUC of model D was higher than that of model C in the external validation set by 21% (P = 0.02).

CONCLUSIONS

BRAF mutation abundance, not status, reflects PTC biological behavior. Integrating BRAF mutation abundance and preoperative clinical information can be used to better preoperatively predict BRAF-positive PTC risk and guide clinical decision making.

TRIAL REGISTRATION

ChiCTR, ChiCTR2300071472. Registered 31 July 2016 - Retrospectively registered, https://www.chictr.org.cn/showproj.html?proj=190478 .

摘要

背景

BRAF 突变是甲状腺乳头状癌(PTC)中最常见的基因改变。然而,BRAF 突变状态与丰度和 PTC 生物学行为之间的关联尚不清楚。因此,本研究调查了 BRAF 突变状态与丰度是否与 PTC 生物学行为相关,以及 BRAF 突变丰度是否可用于进一步分层风险。

方法

528 例 PTC 患者的术后福尔马林固定石蜡包埋(FFPE)标本组成回顾性队列,167 例 PTC 患者的术前细针穿刺(FNA)标本组成前瞻性队列。此外,从另外两家医院收集 74 份 FNA 标本以组成外部队列。采用液滴数字聚合酶链反应(ddPCR)检测两种标本中的 BRAF 突变状态和丰度。在各队列中分析 BRAF 突变状态和丰度与 PTC 生物学行为之间的关系。为预测 BRAF 阳性 PTC 的风险分层,我们构建了术后临床病理模型(模型 A,回顾性;模型 B,前瞻性)、术前临床模型(模型 C)以及结合 BRAF 突变丰度和术前临床信息的融合模型(模型 D)。曲线下面积(AUC)值用于评估这些模型的性能。

结果

回顾性、前瞻性和外部队列的单因素和多因素分析表明,与 PTC 生物学行为显著相关的是 BRAF 突变丰度而非状态。BRAF 突变丰度的增加与 BRAF 阳性 PTC 风险增加显著相关。验证集中模型 A、模型 B、模型 C 和模型 D 的 AUC 分别为 0.89(95%CI,0.83 - 0.94)、0.89(95%CI,0.83 - 0.99)、

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验