Suppr超能文献

一种用于预测临床N0期乳头状甲状腺癌大量颈部淋巴结转移的放射组学模型。

A radiopathomics model for predicting large-number cervical lymph node metastasis in clinical N0 papillary thyroid carcinoma.

作者信息

Xiao Weihan, Zhou Wang, Yuan Hongmei, Liu Xiaoling, He Fanding, Hu Xiaomin, Ye Xianjun, Qin Xiachuan

机构信息

Department of Ultrasound, Chengdu Second People's Hospital, Chengdu, China.

North Sichuan Medical College, Nanchong, China.

出版信息

Eur Radiol. 2025 Jan 29. doi: 10.1007/s00330-025-11377-8.

Abstract

OBJECTIVES

This study aimed to develop a multimodal radiopathomics model utilising preoperative ultrasound (US) and fine-needle aspiration cytology (FNAC) to predict large-number cervical lymph node metastasis (CLNM) in patients with clinically lymph node-negative (cN0) papillary thyroid carcinoma (PTC).

MATERIALS AND METHODS

This multicentre retrospective study included patients with PTC between October 2017 and June 2024 across seven institutions. Patients were categorised based on the presence or absence of large-number CLNM in training, validation, and external testing cohorts. A clinical model was developed based on the maximum diameter of thyroid nodules. Radiomics features were extracted from US images and pathomics features were extracted from FNAC images. Feature selection was performed using univariate analysis, correlation analysis, and least absolute shrinkage and selection operator regression. Six machine learning (ML) algorithms were employed to construct radiomics, pathomics, and radiopathomics models. Predictive performance was assessed using the area under the curve (AUC), and decision curve analysis (DCA).

RESULTS

A total of 426 patients with PTC (41.65 ± 12.47 years; 124 men) were included in this study, with 213 (50%) exhibiting large-number CLNM. The multimodal radiopathomics model demonstrated excellent predictive capabilities with AUCs 0.921, 0.873, 0.903; accuracies (ACCs) 0.852, 0.800, 0.833; sensitivities (SENs) 0.876, 0.867, 0.857; specificities (SPEs) 0.829, 0.733, 0.810, for the training, validation, and testing cohorts, respectively. It significantly outperformed the clinical model (AUCs 0.730, 0.698, 0.630; ACCs 0.690, 0.656, 0.627; SENs 0.686, 0.378, 0.556; SPEs 0.695, 0.933, 0.698), the radiomics model (AUCs 0.819, 0.762, 0.783; ACCs 0.752, 0.722, 0.738; SENs 0.657, 0.844, 0.937; SPEs 0.848, 0.600, 0.540), and the pathomics model (AUCs 0.882, 0.786, 0.800; ACCs 0.829, 0.756, 0.786; SENs 0.819, 0.889, 0.857; SPEs 0.838, 0.633, 0.714).

CONCLUSION

The multimodal radiopathomics model demonstrated significant advantages in the preoperative prediction of large-number CLNM in patients with cN0 PTC.

KEY POINTS

Question Accurate preoperative prediction of large-number CLNM in PTC patients can guide treatment plans, but single-modality diagnostic performance remains limited. Findings The radiopathomics model utilising preoperative US and FNAC images effectively predicted large-number CLNM in both validation and testing cohorts, outperforming single predictive models. Clinical relevance Our study proposes a multimodal radiopathomics model based on preoperative US and FNAC images, which can effectively predict large-number CLNM in PTC preoperatively and guide clinicians in treatment planning.

摘要

目的

本研究旨在开发一种多模态放射组学模型,利用术前超声(US)和细针穿刺细胞学检查(FNAC)来预测临床淋巴结阴性(cN0)的乳头状甲状腺癌(PTC)患者的大量颈部淋巴结转移(CLNM)。

材料与方法

这项多中心回顾性研究纳入了2017年10月至2024年6月期间7家机构的PTC患者。根据训练、验证和外部测试队列中是否存在大量CLNM对患者进行分类。基于甲状腺结节的最大直径建立了一个临床模型。从US图像中提取放射组学特征,从FNAC图像中提取病理组学特征。使用单变量分析、相关性分析和最小绝对收缩和选择算子回归进行特征选择。采用六种机器学习(ML)算法构建放射组学、病理组学和放射病理组学模型。使用曲线下面积(AUC)和决策曲线分析(DCA)评估预测性能。

结果

本研究共纳入426例PTC患者(41.65±12.47岁;124例男性),其中213例(50%)表现为大量CLNM。多模态放射病理组学模型在训练、验证和测试队列中分别表现出优异的预测能力,AUC分别为0.921、0.873、0.903;准确率(ACC)分别为0.852、0.800、0.833;敏感度(SEN)分别为0.876、0.867、0.857;特异度(SPE)分别为0.829、0.733、0.810。它显著优于临床模型(AUC分别为0.730、0.698、0.630;ACC分别为0.690、0.656、0.627;SEN分别为0.686、0.378、0.556;SPE分别为0.695、0.933、0.698)、放射组学模型(AUC分别为0.819、0.762、0.783;ACC分别为0.752、0.722、0.738;SEN分别为0.657、0.844、0.937;SPE分别为0.848、0.600、0.540)和病理组学模型(AUC分别为0.882、0.786、0.800;ACC分别为0.829、0.756、0.786;SEN分别为0.819、0.889、0.857;SPE分别为0.838、0.633、0.714)。

结论

多模态放射病理组学模型在术前预测cN0 PTC患者的大量CLNM方面显示出显著优势。

关键点

问题准确术前预测PTC患者的大量CLNM可指导治疗方案,但单模态诊断性能仍有限。发现利用术前US和FNAC图像的放射病理组学模型在验证和测试队列中均能有效预测大量CLNM,优于单一预测模型。临床意义我们的研究提出了一种基于术前US和FNAC图像的多模态放射病理组学模型,该模型可有效术前预测PTC患者的大量CLNM并指导临床医生进行治疗规划。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验