Suppr超能文献

基于增强CT图像结合放射学和临床特征的深度学习模型融合模型在鉴别乏脂性肾上腺腺瘤与转移瘤中的评估。

Evaluation of a fusion model combining deep learning models based on enhanced CT images with radiological and clinical features in distinguishing lipid-poor adrenal adenoma from metastatic lesions.

作者信息

Wang Shao-Cai, Yin Sheng-Nan, Wang Zi-You, Ding Ning, Ji Yi-Ding, Jin Long

机构信息

Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, SuZhou, JiangSu province, 215200, China.

出版信息

BMC Med Imaging. 2025 Jul 1;25(1):219. doi: 10.1186/s12880-025-01798-8.

Abstract

OBJECTIVE

To evaluate the diagnostic performance of a machine learning model combining deep learning models based on enhanced CT images with radiological and clinical features in differentiating lipid-poor adrenal adenomas from metastatic tumors, and to explain the model's prediction results through SHAP(Shapley Additive Explanations) analysis.

METHODS

A retrospective analysis was conducted on abdominal contrast-enhanced CT images and clinical data from 416 pathologically confirmed adrenal tumor patients at our hospital from July 2019 to December 2024. Patients were randomly divided into training and testing sets in a 7:3 ratio. Six convolutional neural network (CNN)-based deep learning models were employed, and the model with the highest diagnostic performance was selected based on the area under curve(AUC) of the ROC. Subsequently, multiple machine learning models incorporating clinical and radiological features were developed and evaluated using various indicators and AUC.The best-performing machine learning model was further analyzed using SHAP plots to enhance interpretability and quantify feature contributions.

RESULTS

All six deep learning models demonstrated excellent diagnostic performance, with AUC values exceeding 0.8, among which ResNet50 achieved the highest AUC. Among the 10 machine learning models incorporating clinical and imaging features, the extreme gradient boosting(XGBoost) model exhibited the best accuracy(ACC), sensitivity, and AUC, indicating superior diagnostic performance.SHAP analysis revealed contributions from ResNet50, RPW, age, and other key features in model predictions.

CONCLUSION

Machine learning models based on contrast-enhanced CT combined with clinical and imaging features exhibit outstanding diagnostic performance in differentiating lipid-poor adrenal adenomas from metastases.

摘要

目的

评估一种基于增强CT图像的深度学习模型与放射学及临床特征相结合的机器学习模型在鉴别乏脂性肾上腺腺瘤与转移瘤方面的诊断性能,并通过SHAP(Shapley值加法解释)分析解释该模型的预测结果。

方法

对2019年7月至2024年12月我院416例经病理证实的肾上腺肿瘤患者的腹部增强CT图像和临床资料进行回顾性分析。患者按7:3的比例随机分为训练集和测试集。采用6种基于卷积神经网络(CNN)的深度学习模型,并根据ROC曲线下面积(AUC)选择诊断性能最高的模型。随后,开发并使用各种指标和AUC评估结合临床和放射学特征的多个机器学习模型。使用SHAP图进一步分析性能最佳的机器学习模型,以增强可解释性并量化特征贡献。

结果

所有6种深度学习模型均表现出优异的诊断性能,AUC值均超过0.8,其中ResNet50的AUC最高。在10种结合临床和影像特征的机器学习模型中,极端梯度提升(XGBoost)模型表现出最佳的准确率(ACC)、敏感性和AUC,表明其诊断性能优越。SHAP分析揭示了ResNet50、RPW、年龄和其他关键特征在模型预测中的贡献。

结论

基于增强CT结合临床和影像特征的机器学习模型在鉴别乏脂性肾上腺腺瘤与转移瘤方面表现出出色的诊断性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/960e/12210563/66037a5990ff/12880_2025_1798_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验