Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada.
Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
Nat Commun. 2024 Jan 22;15(1):654. doi: 10.1038/s41467-024-44824-z.
Medical image segmentation is a critical component in clinical practice, facilitating accurate diagnosis, treatment planning, and disease monitoring. However, existing methods, often tailored to specific modalities or disease types, lack generalizability across the diverse spectrum of medical image segmentation tasks. Here we present MedSAM, a foundation model designed for bridging this gap by enabling universal medical image segmentation. The model is developed on a large-scale medical image dataset with 1,570,263 image-mask pairs, covering 10 imaging modalities and over 30 cancer types. We conduct a comprehensive evaluation on 86 internal validation tasks and 60 external validation tasks, demonstrating better accuracy and robustness than modality-wise specialist models. By delivering accurate and efficient segmentation across a wide spectrum of tasks, MedSAM holds significant potential to expedite the evolution of diagnostic tools and the personalization of treatment plans.
医学图像分割是临床实践中的关键组成部分,有助于实现准确的诊断、治疗计划和疾病监测。然而,现有的方法通常针对特定的模态或疾病类型进行定制,缺乏在广泛的医学图像分割任务中具有通用性。在这里,我们提出了 MedSAM,这是一种旨在通过实现通用医学图像分割来弥合这一差距的基础模型。该模型是在一个包含 1,570,263 个图像-掩模对的大型医学图像数据集上开发的,涵盖了 10 种成像模态和 30 多种癌症类型。我们在 86 个内部验证任务和 60 个外部验证任务上进行了全面评估,证明了比模态专业模型更高的准确性和鲁棒性。通过在广泛的任务中提供准确和高效的分割,MedSAM 具有加速诊断工具发展和治疗计划个性化的巨大潜力。
Nat Commun. 2024-1-22
Med Image Anal. 2024-2
Med Phys. 2024-3
J Imaging Inform Med. 2024-8
IEEE J Biomed Health Inform. 2024-10
IEEE Trans Autom Sci Eng. 2025
Nat Biomed Eng. 2025-9-5
NPJ Digit Med. 2025-9-2
Chem Biomed Imaging. 2025-4-8
Nat Methods. 2024-2
Med Image Anal. 2024-2
Med Image Anal. 2023-10
Nat Methods. 2023-7
Med Image Anal. 2023-1
Nat Commun. 2022-7-15
Nat Rev Clin Oncol. 2022-2
Med Image Anal. 2021-7