文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在医学图像中分割任何内容。

Segment anything in medical images.

机构信息

Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada.

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.

出版信息

Nat Commun. 2024 Jan 22;15(1):654. doi: 10.1038/s41467-024-44824-z.


DOI:10.1038/s41467-024-44824-z
PMID:38253604
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10803759/
Abstract

Medical image segmentation is a critical component in clinical practice, facilitating accurate diagnosis, treatment planning, and disease monitoring. However, existing methods, often tailored to specific modalities or disease types, lack generalizability across the diverse spectrum of medical image segmentation tasks. Here we present MedSAM, a foundation model designed for bridging this gap by enabling universal medical image segmentation. The model is developed on a large-scale medical image dataset with 1,570,263 image-mask pairs, covering 10 imaging modalities and over 30 cancer types. We conduct a comprehensive evaluation on 86 internal validation tasks and 60 external validation tasks, demonstrating better accuracy and robustness than modality-wise specialist models. By delivering accurate and efficient segmentation across a wide spectrum of tasks, MedSAM holds significant potential to expedite the evolution of diagnostic tools and the personalization of treatment plans.

摘要

医学图像分割是临床实践中的关键组成部分,有助于实现准确的诊断、治疗计划和疾病监测。然而,现有的方法通常针对特定的模态或疾病类型进行定制,缺乏在广泛的医学图像分割任务中具有通用性。在这里,我们提出了 MedSAM,这是一种旨在通过实现通用医学图像分割来弥合这一差距的基础模型。该模型是在一个包含 1,570,263 个图像-掩模对的大型医学图像数据集上开发的,涵盖了 10 种成像模态和 30 多种癌症类型。我们在 86 个内部验证任务和 60 个外部验证任务上进行了全面评估,证明了比模态专业模型更高的准确性和鲁棒性。通过在广泛的任务中提供准确和高效的分割,MedSAM 具有加速诊断工具发展和治疗计划个性化的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50fe/10803759/89a4a07dd36e/41467_2024_44824_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50fe/10803759/b8708b33fd2a/41467_2024_44824_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50fe/10803759/4f3e8efdb20b/41467_2024_44824_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50fe/10803759/c593a92f00b1/41467_2024_44824_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50fe/10803759/a2e906911ad9/41467_2024_44824_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50fe/10803759/89a4a07dd36e/41467_2024_44824_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50fe/10803759/b8708b33fd2a/41467_2024_44824_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50fe/10803759/4f3e8efdb20b/41467_2024_44824_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50fe/10803759/c593a92f00b1/41467_2024_44824_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50fe/10803759/a2e906911ad9/41467_2024_44824_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50fe/10803759/89a4a07dd36e/41467_2024_44824_Fig5_HTML.jpg

相似文献

[1]
Segment anything in medical images.

Nat Commun. 2024-1-22

[2]
Necessity and impact of specialization of large foundation model for medical segmentation tasks.

Med Phys. 2025-1

[3]
Segment anything model for medical images?

Med Image Anal. 2024-2

[4]
An efficient segment anything model for the segmentation of medical images.

Sci Rep. 2024-8-21

[5]
[Not Available].

Med Phys. 2024-3

[6]
From CNN to Transformer: A Review of Medical Image Segmentation Models.

J Imaging Inform Med. 2024-8

[7]
LeSAM: Adapt Segment Anything Model for Medical Lesion Segmentation.

IEEE J Biomed Health Inform. 2024-10

[8]
A modality-collaborative convolution and transformer hybrid network for unpaired multi-modal medical image segmentation with limited annotations.

Med Phys. 2023-9

[9]
A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup.

Med Phys. 2023-3

[10]
Deep label fusion: A generalizable hybrid multi-atlas and deep convolutional neural network for medical image segmentation.

Med Image Anal. 2023-1

引用本文的文献

[1]
Discordance in tumour response assessment for gastric cancer after neoadjuvant chemotherapy using different methods.

Abdom Radiol (NY). 2025-9-9

[2]
DVF-YOLO-Seg: A two-stage breast mass segmentation model with enhanced feature extraction and small lesion detection.

Digit Health. 2025-9-2

[3]
Oral-Anatomical Knowledge-Informed Semi-Supervised Learning for 3D Dental CBCT Segmentation and Lesion Detection.

IEEE Trans Autom Sci Eng. 2025

[4]
A generalist foundation model and database for open-world medical image segmentation.

Nat Biomed Eng. 2025-9-5

[5]
Radiomics Quality Score 2.0: towards radiomics readiness levels and clinical translation for personalized medicine.

Nat Rev Clin Oncol. 2025-9-3

[6]
Large-vocabulary segmentation for medical images with text prompts.

NPJ Digit Med. 2025-9-2

[7]
Implicit Runge-Kutta based sparse identification of governing equations in biologically motivated systems.

Sci Rep. 2025-9-2

[8]
Large vision model framework for automated analysis: From static morphometry to dynamic neural activity.

bioRxiv. 2025-8-19

[9]
Constructing and Using Cell Type Populations of the Human Reference Atlas.

bioRxiv. 2025-8-20

[10]
Efficient 3D Biomedical Image Segmentation by Parallelly Multiscale Transformer-CNN Aggregation Network.

Chem Biomed Imaging. 2025-4-8

本文引用的文献

[1]
Metrics reloaded: recommendations for image analysis validation.

Nat Methods. 2024-2

[2]
Segment anything model for medical images?

Med Image Anal. 2024-2

[3]
Segment anything model for medical image analysis: An experimental study.

Med Image Anal. 2023-10

[4]
Towards foundation models of biological image segmentation.

Nat Methods. 2023-7

[5]
Blinded, randomized trial of sonographer versus AI cardiac function assessment.

Nature. 2023-4

[6]
Volumetric memory network for interactive medical image segmentation.

Med Image Anal. 2023-1

[7]
The Medical Segmentation Decathlon.

Nat Commun. 2022-7-15

[8]
Predicting cancer outcomes with radiomics and artificial intelligence in radiology.

Nat Rev Clin Oncol. 2022-2

[9]
MIDeepSeg: Minimally interactive segmentation of unseen objects from medical images using deep learning.

Med Image Anal. 2021-8

[10]
Loss odyssey in medical image segmentation.

Med Image Anal. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索