文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种利用外周血单个核细胞预测多发性硬化症下次复发时间的新型基因特征。

A novel gene signature for forecasting time to next relapse in multiple sclerosis using peripheral blood mononuclear cells.

作者信息

Zhang Huimin, Yang Jiahui, Zhang Xiaobo, Wu Chaoyi, Zhao Zhen, Yang Ming, Wu Zhaoping

机构信息

Department of Neurology, The First People's Hospital of Lin'an District, Hangzhou, Zhejiang, 311300, China.

Department of Neurology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, 412007, China.

出版信息

BMC Neurol. 2025 Jul 1;25(1):261. doi: 10.1186/s12883-025-04231-3.


DOI:10.1186/s12883-025-04231-3
PMID:40597893
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12210466/
Abstract

AIM: The purpose of this research study was to develop and validate a gene signature based on peripheral blood mononuclear cells (PBMCs) for predicting the time to the next relapse in multiple sclerosis (MS). METHODS: The GSE15245 dataset (N = 94) was divided into a training set (N = 65) and a testing set (N = 29). First, the training set was analyzed using weighted gene co-expression network analysis (WGCNA) to identify key modules that were highly correlated with the timing of the next acute relapse. Subsequently, the hub genes within these key modules were subjected to univariate Cox regression analysis, and genes related to the recurrence time of MS were identified. The least absolute shrinkage and selection operator (LASSO) Cox regression was used to refine the extraction further. Then, the gene signatures were constructed using multivariate Cox regression. The efficacy of the model that was based on the training set database was evaluated using receiver operating characteristic (ROC) curves and validated using an independent testing set. Additionally, gene signatures were also validated for differential expression using an external independent dataset, GSE21942 (N = 29), along with experimental verification. RESULT: Two key modules were identified with WGCNA. Univariate Cox regression analysis yielded 30 genes related to the relapse time of MS from these two modules, and then LASSO regression analysis further refined the selection to four genes, namely, BLK, P2RX5, GP1BA, and PF4. These four genes were used within the training dataset to build a Cox regression model, and this showed high prediction performance in the training as well as the testing datasets. Both external dataset analysis and experimental validation corroborated the differential expression of BLK and P2RX5 in patients with MS. CONCLUSION: BLK, P2RX5, GP1BA, and PF4 emerge as potential predictors of future disease activity in individuals with MS.

摘要

目的:本研究旨在开发并验证一种基于外周血单个核细胞(PBMC)的基因特征,用于预测多发性硬化症(MS)下次复发的时间。 方法:将GSE15245数据集(N = 94)分为训练集(N = 65)和测试集(N = 29)。首先,使用加权基因共表达网络分析(WGCNA)对训练集进行分析,以识别与下次急性复发时间高度相关的关键模块。随后,对这些关键模块内的枢纽基因进行单变量Cox回归分析,确定与MS复发时间相关的基因。使用最小绝对收缩和选择算子(LASSO)Cox回归进一步优化提取。然后,使用多变量Cox回归构建基因特征。基于训练集数据库的模型效能通过受试者工作特征(ROC)曲线进行评估,并使用独立测试集进行验证。此外,还使用外部独立数据集GSE21942(N = 29)以及实验验证对基因特征的差异表达进行了验证。 结果:通过WGCNA识别出两个关键模块。单变量Cox回归分析从这两个模块中得出30个与MS复发时间相关的基因,然后LASSO回归分析进一步将选择优化为四个基因,即BLK、P2RX5、GP1BA和PF4。在训练数据集中使用这四个基因构建了Cox回归模型,该模型在训练集和测试集中均显示出较高的预测性能。外部数据集分析和实验验证均证实了BLK和P2RX5在MS患者中的差异表达。 结论:BLK、P2RX5、GP1BA和PF4成为MS患者未来疾病活动的潜在预测指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5b/12210466/6c06a013e530/12883_2025_4231_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5b/12210466/1be04c746bfb/12883_2025_4231_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5b/12210466/aa034e79eed3/12883_2025_4231_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5b/12210466/1b4795ad2ef6/12883_2025_4231_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5b/12210466/e9da9d19993f/12883_2025_4231_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5b/12210466/5c8900fc6ce0/12883_2025_4231_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5b/12210466/6c06a013e530/12883_2025_4231_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5b/12210466/1be04c746bfb/12883_2025_4231_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5b/12210466/aa034e79eed3/12883_2025_4231_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5b/12210466/1b4795ad2ef6/12883_2025_4231_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5b/12210466/e9da9d19993f/12883_2025_4231_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5b/12210466/5c8900fc6ce0/12883_2025_4231_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5b/12210466/6c06a013e530/12883_2025_4231_Fig6_HTML.jpg

相似文献

[1]
A novel gene signature for forecasting time to next relapse in multiple sclerosis using peripheral blood mononuclear cells.

BMC Neurol. 2025-7-1

[2]
Deciphering Shared Gene Signatures and Immune Infiltration Characteristics Between Gestational Diabetes Mellitus and Preeclampsia by Integrated Bioinformatics Analysis and Machine Learning.

Reprod Sci. 2025-5-15

[3]
Development and validation of a Log odds of negative lymph nodes/T stage ratio-based prognostic model for gastric cancer.

Front Oncol. 2025-6-3

[4]
Bioinformatics identification and validation of m6A/m1A/m5C/m7G/ac4 C-modified genes in oral squamous cell carcinoma.

BMC Cancer. 2025-7-1

[5]
Integrated proteomics and transcriptomics analysis reveals key regulatory genes between ER-positive/PR-positive and ER-positive/PR-negative breast cancer.

BMC Cancer. 2025-7-1

[6]
Identification of potential pathogenic genes associated with the comorbidity of rheumatoid arthritis and renal fibrosis using bioinformatics and machine learning.

Sci Rep. 2025-7-1

[7]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[8]
Identification of a novel prognostic gene signature in pleural mesothelioma: a study based on The Cancer Genome Atlas database and experimental validation.

Transl Cancer Res. 2025-5-30

[9]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[10]
Peripheral HLA-DRCD141 Classical Monocytes Predict Relapse Risk and Worsening in Multiple Sclerosis.

Neurol Neuroimmunol Neuroinflamm. 2025-9

本文引用的文献

[1]
B cell-targeting chimeric antigen receptor T cells as an emerging therapy in neuroimmunological diseases.

Lancet Neurol. 2024-6

[2]
Activation of coagulation FXI promotes endothelial inflammation and amplifies platelet activation in a nonhuman primate model of hyperlipidemia.

Res Pract Thromb Haemost. 2023-11-27

[3]
Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure.

Biomedicines. 2022-3-30

[4]
Peripheral B-cell dysregulation is associated with relapse after long-term quiescence in patients with multiple sclerosis.

Immunol Cell Biol. 2022-7

[5]
Molecular Mechanisms of Immunosenescene and Inflammaging: Relevance to the Immunopathogenesis and Treatment of Multiple Sclerosis.

Front Neurol. 2022-2-25

[6]
Magnetic Resonance Imaging as a Prognostic Disability Marker in Clinically Isolated Syndrome and Multiple Sclerosis: A Systematic Review and Meta-Analysis.

Diagnostics (Basel). 2022-1-21

[7]
Multiple sclerosis and myelin basic protein: insights into protein disorder and disease.

Amino Acids. 2022-1

[8]
MRI Prognostic Factors in Multiple Sclerosis, Neuromyelitis Optica Spectrum Disorder, and Myelin Oligodendrocyte Antibody Disease.

Front Neurol. 2021-11-18

[9]
BLK polymorphisms and expression level in neuromyelitis optica spectrum disorder.

CNS Neurosci Ther. 2021-12

[10]
Apparent changes in the epidemiology and severity of multiple sclerosis.

Nat Rev Neurol. 2021-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索