文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

中国中老年癌症患者抑郁预测的可解释机器学习模型:基于中国健康与养老追踪调查(CHARLS)队列的研究

An interpretable machine learning model for predicting depression in middle-aged and elderly cancer patients in China: a study based on the CHARLS cohort.

作者信息

Xiao Yue, Zhao Zejin, Su Chen-Guang, Li Jian, Liu Jinlong

机构信息

Department of Hepatobiliary Surgery, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei Province, China.

Hebei Key Laboratory of Panvascular Diseases, Chengde, 067000, Hebei Province, China.

出版信息

BMC Psychiatry. 2025 Jul 1;25(1):610. doi: 10.1186/s12888-025-07074-x.


DOI:10.1186/s12888-025-07074-x
PMID:40597989
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12210965/
Abstract

BACKGROUND: Depression is very common in middle-aged and elderly cancer patients, which will seriously damage the quality of life and treatment effect of patients. This study aims to use machine learning methods to develop a predictive model to identify depression risk. However, since the traditional machine learning models have 'black box nature', Shapley Additive exPlanation is used to determine the key risk factors. METHODS: This study included 743 cancer patients aged 45 and above from the 2011-2020 China Health and Retirement Longitudinal Study (CHARLS), and analyzed a total of 19 variables including demographic factors, economic factors, health factors, family factors, and personal factors. After screening the predictive features by LASSO regression, in order to determine the best model for prediction, six machine learning models-Support Vector Machine, K-Nearest Neighbors, Multi-layer Perceptron, Decision Tree, XGBoost and Random Forest were trained. RESULTS: After training, the random forest model showed the best decision performance, AUC (95% CI): 0.774 (0.740-0.809). Subsequently, the model was interpreted by Shapley Additive exPlanation, and five key characteristics affecting the risk of depression were found. The feature importance plot intuitively shows that the predicted depression risk is significantly increased for patients with poor life satisfaction. CONCLUSIONS: We developed a clinical visualization model for health care providers to estimate the risk of depression in middle-aged and elderly cancer patients. As a powerful tool for early identification of depressive symptoms in middle-aged and elderly cancer patients, this model enables medical workers to implement clinical interventions earlier to obtain better clinical benefits.

摘要

背景:抑郁症在中老年癌症患者中非常常见,这将严重损害患者的生活质量和治疗效果。本研究旨在使用机器学习方法开发一个预测模型来识别抑郁风险。然而,由于传统机器学习模型具有“黑箱性质”,因此使用夏普利值加法解释(Shapley Additive exPlanation)来确定关键风险因素。 方法:本研究纳入了2011 - 2020年中国健康与养老追踪调查(CHARLS)中743名年龄在45岁及以上的癌症患者,共分析了包括人口统计学因素、经济因素、健康因素、家庭因素和个人因素在内的19个变量。通过LASSO回归筛选预测特征后,为了确定最佳预测模型,对六个机器学习模型——支持向量机、K近邻、多层感知器、决策树、XGBoost和随机森林进行了训练。 结果:训练后,随机森林模型显示出最佳决策性能,AUC(95%置信区间):0.774(0.740 - 0.809)。随后,通过夏普利值加法解释对该模型进行解释,发现了影响抑郁风险的五个关键特征。特征重要性图直观地显示,生活满意度差的患者预测抑郁风险显著增加。 结论:我们为医疗保健提供者开发了一种临床可视化模型,以估计中老年癌症患者的抑郁风险。作为早期识别中老年癌症患者抑郁症状的有力工具,该模型使医务人员能够更早地实施临床干预,以获得更好的临床效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ecc/12210965/274d57aa496e/12888_2025_7074_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ecc/12210965/12ac09c347f8/12888_2025_7074_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ecc/12210965/f4a6f3edbbe6/12888_2025_7074_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ecc/12210965/f1c36f8350e6/12888_2025_7074_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ecc/12210965/6f2679c855e2/12888_2025_7074_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ecc/12210965/cf74feed33f9/12888_2025_7074_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ecc/12210965/4142096df75a/12888_2025_7074_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ecc/12210965/274d57aa496e/12888_2025_7074_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ecc/12210965/12ac09c347f8/12888_2025_7074_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ecc/12210965/f4a6f3edbbe6/12888_2025_7074_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ecc/12210965/f1c36f8350e6/12888_2025_7074_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ecc/12210965/6f2679c855e2/12888_2025_7074_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ecc/12210965/cf74feed33f9/12888_2025_7074_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ecc/12210965/4142096df75a/12888_2025_7074_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ecc/12210965/274d57aa496e/12888_2025_7074_Fig7_HTML.jpg

相似文献

[1]
An interpretable machine learning model for predicting depression in middle-aged and elderly cancer patients in China: a study based on the CHARLS cohort.

BMC Psychiatry. 2025-7-1

[2]
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.

J Med Internet Res. 2025-5-26

[3]
Construction and validation of HBV-ACLF bacterial infection diagnosis model based on machine learning.

BMC Infect Dis. 2025-7-1

[4]
Interpretable machine learning for predicting isolated basal septal hypertrophy.

PLoS One. 2025-6-30

[5]
A risk prediction system for depression in middle-aged and older adults grounded in machine learning and visualization technology: a cohort study.

Front Public Health. 2025-6-4

[6]
Development and Validation of a Predictive Model for Activities of Daily Living Dysfunction in Older Adults: Retrospective Analysis of Data From the China Health and Retirement Longitudinal Study.

JMIR Med Inform. 2025-6-19

[7]
The association between hearing loss and depression in the China health and retirement longitudinal study.

Sci Rep. 2025-7-1

[8]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[9]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[10]
Interpretable machine learning for depression recognition with spatiotemporal gait features among older adults: a cross-sectional study in Xiamen, China.

BMC Geriatr. 2025-7-2

本文引用的文献

[1]
Predicting Depression, Anxiety, and Their Comorbidity among Patients with Breast Cancer in China Using Machine Learning: A Multisite Cross-Sectional Study.

Depress Anxiety. 2024-6-21

[2]
A machine-learning-derived online prediction model for depression risk in COPD patients: A retrospective cohort study from CHARLS.

J Affect Disord. 2025-5-15

[3]
A meta-analysis on the incidence rate of depression in Chinese menopausal women.

BMC Psychiatry. 2025-2-19

[4]
Study on the changes and influencing factors of depression in Chinese women with cancer: an analysis based on CHARLS panel data.

Front Public Health. 2025-1-16

[5]
Sleep loss and emotion: A systematic review and meta-analysis of over 50 years of experimental research.

Psychol Bull. 2024-4

[6]
Understanding the black-box: towards interpretable and reliable deep learning models.

PeerJ Comput Sci. 2023-11-29

[7]
Bidirectional relationship between sleep and depression.

Neurosci Res. 2025-2

[8]
Management of Anxiety and Depression in Adult Survivors of Cancer: ASCO Guideline Update.

J Clin Oncol. 2023-6-20

[9]
The prevalence of depression and suicidal ideation among cancer patients in mainland China and its provinces, 1994-2021: A systematic review and meta-analysis of 201 cross-sectional studies.

J Affect Disord. 2023-2-15

[10]
Less Social Participation Is Associated With a Higher Risk of Depressive Symptoms Among Chinese Older Adults: A Community-Based Longitudinal Prospective Cohort Study.

Front Public Health. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索