Gao Lei, Tian Boyan, Jia Qiqi, He Xingyu, Zhao Guannan, Wang Yueheng
The Third Department of Ultrasound, Baoding First Central Hospital, Baoding, China.
Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
PLoS One. 2025 Jun 30;20(6):e0325992. doi: 10.1371/journal.pone.0325992. eCollection 2025.
The basal septal hypertrophy(BSH) is an often under-recognized morphological change in the left ventricle. This is a common echocardiographic finding with a prevalence of approximately 7-20%, which may indicate early structural and functional remodeling of the left ventricle in certain pathologies. It also poses a risk of severe left ventricular outflow tract obstruction and is a significant cause of postoperative complications in patients undergoing transcatheter aortic valve implantation (TAVI). Compared to traditional algorithms, machine learning algorithms are more effective at capturing nonlinear relationships and developing more accurate diagnostic and predictive models. However, no predictive models for BSH have been developed using machine learning algorithms.
To evaluate the effectiveness of five machine learning algorithms in predicting thickening of the basal segment of the interventricular septum and to develop a simple, yet efficient, prediction model for BSH.
Echocardiographic and clinical data from 902 patients were collected from the First Central Hospital of Baoding City, including 91 BSH patients and 811 non-BSH patients. The data were divided into training and test sets in a 7:3 ratio. Five machine learning algorithms -XGBoost, Random Forest(RF), Dicision tree(DT), K-Nearest Neighbor classification(KNN), and Naive Bayes(NB) were applied to construct the models, combined with logistic regression (LR) based on Lasso regression. The performance of each model was evaluated using Receiver Operating Characteristic curve (ROC),calibration curves and Decision Curve Analysis (DCA)curve, with the model demonstrating the best performance being selected. The shapley additive explanation (SHAP) method was employed to interpret the XBoost and RF models.
The logistic regression (LR) of the Lasso regression model showed that IVS-AO Angle, Left Ventricular Mass Index (LVMI), Diastolic Left Ventricular Internal Diameter Index (LVIDdI), Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Distance from mitral valve closure point to basal segment of interventricular septum (MVCP-Sd), GLU, and Mitral Valve peak A (MV-A) were associated with BSH, with odds ratios (OR) of 0.86 (0.831-0.888), 1.034 (1.018-1.052), 0.104 (0.023-0.403), 1.041 (1.021-1.064), 0.964 (0.93-0.998), 0.852 (0.764-0.949), 1.146 (1.023-1.281), and 0.967 (0.947-0.987), respectively. The area under the ROC curve (AUC) for Model-relevant variable IVS-AO Angle, MVCP_Sd,LVMI, GLU, LVIDdI, SBP,DBP,LVIDdI,MV_A were 0.87,0.68,0.66,0.55,0.56,0.67,0.75,0.75. The AUC for the algorithms (XGBoost, RF, DT, KNN, NB) in the test set were 0.92, 0.91, 0.85, 0.84, and 0.88, respectively. The SHAP method identified eight predictor variables for BSH based on importance rankings, with the top four being IVS-AO Angle, LVMI, LVIDdI, and SBP, with IVS-AO Angle emerging as the most important predictor. The external validation of the RF model yielded an AUC of 0.86.
Machine learning can effectively predict BSH, with IVS-AO Angle identified as an independent predictor. The RF model, being simple to operate, can be applied to the risk management of BSH patients.
基底间隔肥厚(BSH)是左心室一种常未被充分认识的形态学改变。这是一种常见的超声心动图表现,患病率约为7%-20%,可能提示某些病理状态下左心室早期的结构和功能重塑。它还会引发严重左心室流出道梗阻的风险,是经导管主动脉瓣植入术(TAVI)患者术后并发症的重要原因。与传统算法相比,机器学习算法在捕捉非线性关系和开发更准确的诊断及预测模型方面更有效。然而,尚未使用机器学习算法开发出针对BSH的预测模型。
评估五种机器学习算法预测室间隔基底段增厚的有效性,并开发一种简单而有效的BSH预测模型。
从保定市第一中心医院收集了902例患者的超声心动图和临床数据,其中包括91例BSH患者和811例非BSH患者。数据按7:3的比例分为训练集和测试集。应用五种机器学习算法——XGBoost、随机森林(RF)、决策树(DT)、K近邻分类(KNN)和朴素贝叶斯(NB)构建模型,并结合基于套索回归的逻辑回归(LR)。使用受试者工作特征曲线(ROC)、校准曲线和决策曲线分析(DCA)曲线评估每个模型的性能,选择表现最佳的模型。采用夏普利值附加解释(SHAP)方法解释XBoost和RF模型。
套索回归模型的逻辑回归(LR)显示,室间隔-主动脉夹角(IVS-AO Angle)、左心室质量指数(LVMI)、舒张期左心室内径指数(LVIDdI)、收缩压(SBP)、舒张压(DBP)、二尖瓣关闭点至室间隔基底段的距离(MVCP-Sd)、血糖(GLU)和二尖瓣A峰(MV-A)与BSH相关,比值比(OR)分别为0.86(0.831-0.888)、1.034(1.018-1.052)、0.104(0.023-0.403)、1.041(1.021-1.064)、0.964(0.93-0.998)、0.852(0.764-0.949)、1.146(1.023-1.281)和0.967(0.947-0.987)。与模型相关变量IVS-AO Angle、MVCP_Sd、LVMI、GLU、LVIDdI、SBP、DBP、LVIDdI、MV_A的ROC曲线下面积(AUC)分别为0.87、0.68、0.66、0.55、0.56、0.67、0.75、0.75。测试集中算法(XGBoost、RF、DT、KNN、NB)的AUC分别为0.92、0.91、0.85、0.84和0.88。SHAP方法根据重要性排名确定了八个BSH预测变量,前四位是IVS-AO Angle、LVMI、LVIDdI和SBP,其中IVS-AO Angle是最重要的预测因素。RF模型的外部验证得出AUC为0.86。
机器学习可有效预测BSH,IVS-AO Angle被确定为独立预测因素。RF模型操作简单,可应用于BSH患者的风险管理。