Suppr超能文献

注意缺陷多动障碍儿童注意力控制的尿液代谢生物标志物:基于核磁共振代谢组学的维度研究方法

Urinary Metabolic Biomarkers of Attentional Control in Children With Attention-Deficit/Hyperactivity Disorder: A Dimensional Approach Through H NMR-Based Metabolomics.

作者信息

Salmerón Ana Del Mar, Fernández-Martín Pilar, Rodríguez-Herrera Rocío, Arrabal-Campos Francisco Manuel, Abreu Ana Cristina, Fernández Ignacio, Flores Pilar

机构信息

Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Almería, Spain.

Faculty of Psychology, Department of Psychology, CTS-280 Clinical and Experimental Neuroscience Research Group and Research Center CiBiS, University of Almeria, Almería, Spain.

出版信息

NMR Biomed. 2025 Aug;38(8):e70088. doi: 10.1002/nbm.70088.

Abstract

Enhancing the understanding of attention-deficit/hyperactivity disorder (ADHD) by linking biological processes with behavioral manifestations is a primary objective of the Research Domain Criteria (RDoC) framework, which aims to transcend traditional diagnostic categories and enable a more precise understanding of mental disorders. This study aimed to replicate five data-driven profiles of attentional control in school-aged children and, for the first time, to explore associated metabolic biomarkers. Understanding these profiles and their biological underpinnings can become critical for improving ADHD diagnosis and developing new targeted interventions. A clinically well-characterized sample of 83 children with (n = 37) and without (n = 46) diagnosed ADHD completed a virtual reality continuous performance test (VR-CPT) and provided urine samples for analysis. Clustering analyses of VR-CPT data identified and replicated five distinct attentional control subgroups, two of which-ADHD-IMP and ADHD-SP-exhibited clinically significant impairments in attention and hyperactivity but opposite performance profiles in response inhibition and latency of response. NMR-based metabolomics further revealed that children in the ADHD-IMP subgroup exhibited a distinct urinary metabolic signature, with alterations in metabolites such as 3-indoxylsulfate, N-phenylacetylglycine, 3-methyl-2-oxovalerate, creatine, creatinine, pseudouridine, and trigonelline. These compounds are potentially linked to microbial activity, energy metabolism, and oxidative stress, biological pathways increasingly recognized in ADHD pathophysiology. Although no direct association emerged between these metabolites and behavioral clusters, combining both data types using machine learning, particularly Logistic Regression, substantially improved classification accuracy compared to using behavioral data alone. These findings highlight the potential of integrating behavioral and molecular markers to refine ADHD characterization and move toward more individualized approaches.

摘要

通过将生物过程与行为表现联系起来,加深对注意力缺陷多动障碍(ADHD)的理解,这是研究领域标准(RDoC)框架的主要目标,该框架旨在超越传统诊断类别,实现对精神障碍更精确的理解。本研究旨在复制学龄儿童注意力控制的五个数据驱动型概况,并首次探索相关的代谢生物标志物。了解这些概况及其生物学基础对于改善ADHD诊断和开发新的靶向干预措施可能至关重要。83名临床特征明确的儿童样本,其中37名被诊断患有ADHD,46名未患ADHD,完成了虚拟现实持续操作测试(VR-CPT)并提供尿液样本进行分析。对VR-CPT数据进行聚类分析,识别并复制了五个不同的注意力控制亚组,其中两个——ADHD-IMP和ADHD-SP——在注意力和多动方面表现出临床上显著的损伤,但在反应抑制和反应潜伏期方面表现出相反的表现概况。基于核磁共振的代谢组学进一步揭示,ADHD-IMP亚组的儿童表现出独特的尿液代谢特征,3-吲哚硫酸盐、N-苯乙酰甘氨酸、3-甲基-2-氧代戊酸、肌酸、肌酐、假尿苷和胡芦巴碱等代谢物发生了变化。这些化合物可能与微生物活性、能量代谢和氧化应激有关,这些生物学途径在ADHD病理生理学中越来越受到认可。尽管这些代谢物与行为聚类之间没有直接关联,但与仅使用行为数据相比,使用机器学习(特别是逻辑回归)结合这两种数据类型,显著提高了分类准确率。这些发现突出了整合行为和分子标记以完善ADHD特征描述并朝着更个性化方法发展的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c06a/12215226/eb87ba74a6a2/NBM-38-e70088-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验