Suppr超能文献

通过机器学习定义的混合性胃癌分子亚型用于预测预后和治疗反应

Molecular Subtypes of Mixed Gastric Cancer Defined by Machine Learning for Predicting Prognosis and Treatment Response.

作者信息

Rao Minchao, Ruan Ruiwen, Xiong Jianping, Deng Jun

机构信息

Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China.

Shangrao Affiliated Hospital, Jiangxi Medical College, Nanchang University, Shangrao, Jiangxi Province, 334000, China.

出版信息

Curr Med Chem. 2025 Jun 23. doi: 10.2174/0109298673376656250602095713.

Abstract

BACKGROUND

Gastric cancer (GC) is traditionally classified into intestinal (IGC), diffuse (DGC), and mixed (MGC) types based on pathological features, with each subtype exhibiting distinct clinical outcomes. Among these, DGC is associated with poor prognosis, characterized by low cell adhesion and a high stromal component. Recent proteomic studies have revealed significant differences in extracellular matrix (ECM) composition between DGC and IGC, highlighting the critical role of ECM in tumor biology. MGC, which combines both intestinal and diffuse characteristics, presents substantial heterogeneity, complicating prognosis and personalized treatment approaches. This study reclassifies MGC using extracellular matrix receptor (ECMR) and cell adhesion (CA)-related genes (ECRGs), closely linked to the biological behavior of DGC, to provide insights into prognosis and treatment response.

METHODS

RNA sequencing data and clinical information from GC patients were collected from the TCGA and GEO databases, excluding cases of pure IGC and DGC. Based on ECMR and CA-related genes, supervised clustering via Non-negative Matrix Factorization (NMF) was used to identify molecular subtypes in MGC. Differential expression and Cox regression analyses were performed to identify prognostic genes, and an ECMR and CA-based gene signature (ECRS) was developed using machine learning techniques. Gene Set Variation Analysis (GSVA) was conducted to assess functional differences between risk groups, while TIDE and pRRophetic analyses were used to predict responses to immunotherapy and chemotherapy.

RESULTS

A total of 239 MGC patients were classified into two molecular subtypes with significant differences in prognosis. Subtype 2 displayed distinct ECM interactions and connective tissue development pathways. To refine the ECRS model, we tested 117 model combinations across 10 machine learning algorithms, selecting the configuration with the best predictive accuracy. This optimized model distinguished biological and immune characteristics between high- and low-risk groups, with low-risk patients showing greater sensitivity to immunotherapy and standard chemotherapy.

CONCLUSION

This study identifies novel molecular subtypes of MGC based on ECMR and CA-related genes and establishes an effective ECRS model to predict prognosis, immunotherapy response, and chemotherapy sensitivity. This model supports personalized treatment strategies for MGC.

摘要

背景

胃癌(GC)传统上根据病理特征分为肠型(IGC)、弥漫型(DGC)和混合型(MGC),每种亚型具有不同的临床结局。其中,DGC预后较差,其特征是细胞黏附性低且基质成分高。最近的蛋白质组学研究揭示了DGC和IGC之间细胞外基质(ECM)组成的显著差异,突出了ECM在肿瘤生物学中的关键作用。MGC兼具肠型和弥漫型特征,具有很大的异质性,使预后和个性化治疗方法变得复杂。本研究使用与DGC生物学行为密切相关的细胞外基质受体(ECMR)和细胞黏附(CA)相关基因(ECRG)对MGC进行重新分类,以深入了解预后和治疗反应。

方法

从TCGA和GEO数据库收集GC患者的RNA测序数据和临床信息,排除纯IGC和DGC病例。基于ECMR和CA相关基因,通过非负矩阵分解(NMF)进行监督聚类,以识别MGC中的分子亚型。进行差异表达和Cox回归分析以识别预后基因,并使用机器学习技术开发基于ECMR和CA的基因特征(ECRS)。进行基因集变异分析(GSVA)以评估风险组之间的功能差异,同时使用TIDE和pRRophetic分析预测对免疫治疗和化疗的反应。

结果

总共239例MGC患者被分为两种预后有显著差异的分子亚型。亚型2表现出独特的ECM相互作用和结缔组织发育途径。为了优化ECRS模型,我们在10种机器学习算法中测试了117种模型组合,选择了预测准确性最佳的配置。这个优化模型区分了高风险组和低风险组之间的生物学和免疫特征,低风险患者对免疫治疗和标准化疗表现出更高的敏感性。

结论

本研究基于ECMR和CA相关基因识别出MGC的新型分子亚型,并建立了有效的ECRS模型来预测预后、免疫治疗反应和化疗敏感性。该模型支持MGC的个性化治疗策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验