Suppr超能文献

通过不可察觉的皮肤表面摩擦起电收集实现材料分类的触觉增强

Tactile Augmentation of Material Classification via Imperceptible On-Skin Triboelectricity Collection.

作者信息

Huang Junting, Ka Stanley Gong Sheng, Cheong Haydn, Zhang Yaru, Chu Daping, Kar-Narayan Sohini, Wang Wenyu, Huang Yan Yan Shery

机构信息

The Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge, CB3 0FF, UK.

Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.

出版信息

Adv Sci (Weinh). 2025 Jul 2:e00217. doi: 10.1002/advs.202500217.

Abstract

Harnessing intrinsic triboelectric signals from human skin holds promise for enhancing tactile perception. However, collecting these signals without disrupting normal skin functions and convoluting motion artifacts remains challenging. Additionally, person-to-person signal variance complicates data processing. In this study, it is demonstrated that triboelectric signals generated from touch can be imperceptibly collected and processed using a machine learning model to achieve tactile augmentation. When one hand contacts and rubs against a target object, charge transfer occurs between the skin and the object's surface. By placing a substrate-less microfiber electrode on the finger of the other hand, a body-coupled triboelectric circuit is formed to collect these signals, which contain material-specific features such as amplitude and peak ratio. A machine learning technique is developed to process the triboelectric signals, enabling the classification of six different materials with a prediction accuracy of ≈95%. The material differentiation model is further validated across different users, achieving an overall accuracy of ≈88 %, illustrating the potential of utilizing the body-coupled triboelectric circuit for tactile augmentation.

摘要

利用人体皮肤的固有摩擦电信号有望增强触觉感知。然而,在不干扰正常皮肤功能和避免运动伪影卷积的情况下收集这些信号仍然具有挑战性。此外,人与人之间的信号差异使数据处理变得复杂。在本研究中,证明了通过机器学习模型可以在不知不觉中收集和处理触摸产生的摩擦电信号,以实现触觉增强。当一只手接触并摩擦目标物体时,皮肤与物体表面之间会发生电荷转移。通过在另一只手的手指上放置无基底微纤维电极,形成一个身体耦合摩擦电电路来收集这些信号,这些信号包含诸如幅度和峰值比等特定材料特征。开发了一种机器学习技术来处理摩擦电信号,能够以约95%的预测准确率对六种不同材料进行分类。该材料区分模型在不同用户中进一步得到验证,总体准确率约为88%,说明了利用身体耦合摩擦电电路进行触觉增强的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验