Zhang Yunxiao, Xu Guangsheng, Li Ke, Jia Wei, Dong Xiaoyu
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, China.
Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry of CAS, 40-1 South Beijing Road, Urumqi 830011, Xinjiang, China.
Dalton Trans. 2025 Jul 15;54(28):11078-11083. doi: 10.1039/d5dt01253h.
The development of novel advanced ultraviolet (UV) birefringent materials has remained a significant research focus, owing to their requirement for considerable optical anisotropy to enable effective light polarization modulation in laser technologies and scientific applications. In this work, we report the structural chemistry and optical properties of three antimony(III) oxalate crystals: NHSb(CO)F·HO (1), [C(NH)]Sb(CO)F·2HO (2) and (NH)Sb(CO)F·2HO (3); they have been synthesized an aqueous solution evaporation method. Their crystal structures feature distinct architectures driven by Sb lone pair effects: one-dimensional [Sb(CO)F] chains and zero-dimensional [Sb(CO)F] and [Sb(CO)F] clusters. In these structures, although the arrangement angles of [CO] are less than 20°, changes in the overall structure result in variations in birefringence. Such well-ordered structures enable significant birefringence values of 0.381, 0.251, and 0.066 (at 546 nm) to be exhibited by compounds 1, 2, and 3. Also, the UV cutoff edges of compounds 1 and 2 are about 266 nm and 267 nm, which indicate their potential as UV-transparent birefringent materials. This study emphasizes that the optical properties of materials depend on the superposition of polarizabilities from stereochemically distorted polyhedra and π-conjugated planar units within the overall structure.
新型先进紫外(UV)双折射材料的开发一直是一个重要的研究重点,因为在激光技术和科学应用中,实现有效的光偏振调制需要相当大的光学各向异性。在这项工作中,我们报道了三种草酸锑(III)晶体的结构化学和光学性质:NHSb(CO)F·HO(1)、[C(NH)]Sb(CO)F·2HO(2)和(NH)Sb(CO)F·2HO(3);它们是通过水溶液蒸发法合成的。它们的晶体结构具有由Sb孤对效应驱动的独特结构:一维[Sb(CO)F]链和零维[Sb(CO)F]及[Sb(CO)F]簇。在这些结构中,虽然[CO]的排列角度小于20°,但整体结构的变化会导致双折射的变化。这种有序结构使得化合物1、2和3在546nm处分别表现出显著的双折射值0.381、0.251和0.066。此外,化合物1和2的紫外截止边缘约为266nm和267nm,这表明它们作为紫外透明双折射材料的潜力。这项研究强调,材料的光学性质取决于整体结构中立体化学扭曲多面体和π共轭平面单元的极化率叠加。