Suppr超能文献

柳叶沙棘的基因组为沙棘的性别分化提供了新的见解。

The genome of Hippophae salicifolia provides new insights into the sexual differentiation of sea buckthorn.

作者信息

Chen Mingyue, Yang Xingyu, Xun Lan, Qu Zhenlin, Yang Shihai, Yang Yunqiang, Yang Yongping

机构信息

CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.

Yunnan International Joint Laboratory for the Conservation and Utilization of Tropical Timber Tree Species, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.

出版信息

Gigascience. 2025 Jan 6;14. doi: 10.1093/gigascience/giaf046.

Abstract

BACKGROUND

Dioecy, a common reproductive strategy in angiosperms, has evolved independently in various plant lineages, and this has resulted in the evolution of diverse sex chromosome systems and sex determination mechanisms. Hippophae is a genus of dioecious plants with an XY sex determination system, but the molecular underpinnings of this process have not yet been clarified. Most previously published sea buckthorn genome data have been derived from females, yet genomic data on males are critically important for clarifying our understanding of sex determination in this genus. Comparative genomic analyses of male and female sea buckthorn plants can shed light on the origins and evolution of sex. These studies can also enhance our understanding of the molecular mechanisms underlying sexual differentiation and provide novel insights and data for future research on sexual reproduction in plants.

RESULTS

We conducted an in-depth analysis of the genomes of 2 sea buckthorn species, including a male Hippophae gyantsensis, a female Hippophae salicifolia, and 2 haplotypes of male H. salicifolia. The genome size of H. gyantsensis was 704.35 Mb, and that of the female H. salicifolia was 788.28 Mb. The sizes of the 2 haplotype genomes were 1,139.99 Mb and 1,097.34 Mb. The sex-determining region (SDR) of H. salicifolia was 29.71 Mb and contained 249 genes. A comparative analysis of the haplotypes of Chr02 of H. salicifolia revealed that the Y chromosome was shorter than the X chromosome. Chromosomal evolution analysis indicated that Hippophae has experienced significant chromosomal rearrangements following 2 whole-genome duplication events, and the fusion of 2 chromosomes has potentially led to the early formation of sex chromosomes in sea buckthorn. Multiple structural variations between Y and X sex-linked regions might have facilitated the rapid evolution of sex chromosomes in H. salicifolia. Comparison of the transcriptome data of male and female flower buds from H. gyantsensis and H. salicifolia revealed 11 genes specifically expressed in males. Three of these were identified as candidate genes involved in the sex determination of sea buckthorn. These findings will aid future studies of the sex determination mechanisms in sea buckthorn.

CONCLUSION

A comparative genomic analysis was performed to identify the SDR in H. salicifolia. The origins and evolutionary trajectories of sex chromosomes within Hippophae were also determined. Three potential candidate genes associated with sea buckthorn sex determination were identified. Overall, our findings will aid future studies aimed at clarifying the mechanisms of sex determination.

摘要

背景

雌雄异株是被子植物中常见的繁殖策略,在不同的植物谱系中独立进化,这导致了多样的性染色体系统和性别决定机制的演化。沙棘属雌雄异株植物,具有XY性别决定系统,但其这一过程的分子基础尚未阐明。此前发表的大多数沙棘基因组数据都来自雌性植株,而雄性植株的基因组数据对于阐明该属植物的性别决定至关重要。对雄性和雌性沙棘植株进行比较基因组分析,有助于揭示性别的起源和进化。这些研究还能增进我们对性别分化潜在分子机制的理解,并为未来植物有性生殖研究提供新的见解和数据。

结果

我们对2种沙棘的基因组进行了深入分析,包括雄性西藏沙棘、雌性柳叶沙棘以及柳叶沙棘雄性的2个单倍型。西藏沙棘的基因组大小为704.35 Mb,雌性柳叶沙棘的基因组大小为788.28 Mb。2个单倍型基因组的大小分别为1139.99 Mb和1097.34 Mb。柳叶沙棘的性别决定区域(SDR)为29.71 Mb,包含249个基因。对柳叶沙棘Chr02单倍型的比较分析表明,Y染色体比X染色体短。染色体进化分析表明,沙棘在经历了2次全基因组复制事件后发生了显著的染色体重排,2条染色体的融合可能导致了沙棘性染色体的早期形成。Y和X性连锁区域之间的多个结构变异可能促进了柳叶沙棘性染色体的快速进化。对西藏沙棘和柳叶沙棘雌雄花芽转录组数据的比较揭示了11个在雄性中特异性表达的基因。其中3个被鉴定为参与沙棘性别决定的候选基因。这些发现将有助于未来对沙棘性别决定机制的研究。

结论

进行了比较基因组分析以鉴定柳叶沙棘中的性别决定区域。还确定了沙棘中性染色体的起源和进化轨迹。鉴定出3个与沙棘性别决定相关的潜在候选基因。总体而言,我们的发现将有助于未来旨在阐明性别决定机制的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7543/12218201/50c9153afb28/giaf046fig1.jpg

相似文献

2
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
3
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
5
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
6
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.
Cochrane Database Syst Rev. 2008 Jul 16(3):CD001230. doi: 10.1002/14651858.CD001230.pub2.
8
Single-incision sling operations for urinary incontinence in women.
Cochrane Database Syst Rev. 2017 Jul 26;7(7):CD008709. doi: 10.1002/14651858.CD008709.pub3.
10
Interventions targeted at women to encourage the uptake of cervical screening.
Cochrane Database Syst Rev. 2021 Sep 6;9(9):CD002834. doi: 10.1002/14651858.CD002834.pub3.

本文引用的文献

1
JCVI: A versatile toolkit for comparative genomics analysis.
Imeta. 2024 Jun 12;3(4):e211. doi: 10.1002/imt2.211. eCollection 2024 Aug.
2
The evolutionary significance of whole genome duplications in oil biosynthesis of oil crops.
Hortic Res. 2024 Jun 7;11(7):uhae156. doi: 10.1093/hr/uhae156. eCollection 2024 Jul.
4
NextPolish2: A Repeat-aware Polishing Tool for Genomes Assembled Using HiFi Long Reads.
Genomics Proteomics Bioinformatics. 2024 May 9;22(1). doi: 10.1093/gpbjnl/qzad009.
7
Chromosome-level genome assembly of Hippophae gyantsensis.
Sci Data. 2024 Jan 25;11(1):126. doi: 10.1038/s41597-024-02909-w.
8
Unlocking the mystery of the human Y chromosome.
Nat Rev Urol. 2024 Feb;21(2):65-66. doi: 10.1038/s41585-023-00826-y.
9
The origin and evolution of sex chromosomes, revealed by sequencing of the Silene latifolia female genome.
Curr Biol. 2023 Jun 19;33(12):2504-2514.e3. doi: 10.1016/j.cub.2023.05.046. Epub 2023 Jun 7.
10
The Gene Ontology knowledgebase in 2023.
Genetics. 2023 May 4;224(1). doi: 10.1093/genetics/iyad031.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验