Suppr超能文献

使用倾向评分匹配法开发并验证用于预测肺结核患者IGRA假阴性结果的列线图。

Development and validation of a nomogram for predicting false negative IGRA results in pulmonary tuberculosis patients using propensity score matching.

作者信息

Zhang Feng, Gao Yong, Li Tuantuan, Zhang Wei

机构信息

No.2 People's Hospital of Fuyang City, Fuyang Infectious Disease Clinical College of Anhui Medical University, Fuyang, Anhui, China.

出版信息

PLoS One. 2025 Jul 2;20(7):e0327767. doi: 10.1371/journal.pone.0327767. eCollection 2025.

Abstract

OBJECTIVE

This study aims to explore factors influencing false-negative results in Interferon-Gamma Release Assay (IGRA) for patients with Pulmonary Tuberculosis (PTB), and develop a nomogram model to predict IGRA false negatives, thereby optimizing clinical diagnosis and treatment decisions.

METHODS

Data were collected from January 2023 to September 2024 at the Second People's Hospital of Fuyang City, involving 143 PTB patients. Among them, 63 patients who were IGRA negative but pathogen positive formed the observation group, while 80 patients who were both IGRA and pathogen positive constituted the control group. Propensity Score Matching (PSM) was used to balance potential confounding factors between the two groups. Clinical characteristics and laboratory indicators were compared, followed by logistic regression analysis to identify independent risk factors affecting IGRA results. A nomogram model was constructed based on these factors and its predictive performance evaluated.

RESULTS

After PSM, each group consisted of 55 patients. The observation group showed significantly lower levels of white blood cell count (WBC), neutrophil count (NEUT), lymphocyte count (LYM), red blood cell count (RBC), hemoglobin (HGB), and albumin (ALB) compared to the control group (P < 0.05). Multivariate analysis ultimately identified RBC, ALB and NLR as independent predictors of IGRA false-negativity. The developed nomogram model demonstrated good calibration (χ² = 4.482, P = 0.811), with an area under the receiver operating characteristic curve (AUC) of 0.764 (95% CI: 0.675-0.853). Decision curve analysis indicated that the net benefit of predicting false-negative IGRA results using this nomogram model was greater than 0 when the threshold probability ranged from 0.15 to 0.95.

CONCLUSION

Decreased RBC/ALB and elevated NLR may be pivotal factors contributing to false-negative IGRA results in PTB patients. The three-variable nomogram shows enhanced predictive performance, serving as a quantitative tool to identify high-risk cases, particularly for patients with malnutrition or pronounced inflammatory status.

摘要

目的

本研究旨在探讨影响肺结核(PTB)患者γ-干扰素释放试验(IGRA)假阴性结果的因素,并建立列线图模型预测IGRA假阴性,从而优化临床诊断和治疗决策。

方法

收集2023年1月至2024年9月阜阳市第二人民医院143例PTB患者的数据。其中,63例IGRA阴性但病原体阳性的患者组成观察组,80例IGRA和病原体均阳性的患者组成对照组。采用倾向得分匹配(PSM)平衡两组间潜在的混杂因素。比较临床特征和实验室指标,然后进行逻辑回归分析以确定影响IGRA结果的独立危险因素。基于这些因素构建列线图模型并评估其预测性能。

结果

PSM后,每组各有55例患者。与对照组相比,观察组的白细胞计数(WBC)、中性粒细胞计数(NEUT)、淋巴细胞计数(LYM)、红细胞计数(RBC)、血红蛋白(HGB)和白蛋白(ALB)水平显著降低(P < 0.05)。多因素分析最终确定RBC、ALB和中性粒细胞与淋巴细胞比值(NLR)为IGRA假阴性的独立预测因素。所建立的列线图模型显示出良好的校准度(χ² = 4.482,P = 0.811),受试者操作特征曲线(AUC)下面积为0.764(95%CI:0.675 - 0.853)。决策曲线分析表明,当阈值概率在0.15至0.95范围内时,使用该列线图模型预测IGRA假阴性结果的净效益大于0。

结论

RBC/ALB降低和NLR升高可能是导致PTB患者IGRA结果假阴性的关键因素。三变量列线图显示出增强的预测性能,可作为识别高危病例的定量工具,尤其适用于营养不良或炎症状态明显的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48e/12220989/6da4a5700dcb/pone.0327767.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验