Suppr超能文献

深度学习解析了主调控因子和G-四链体在组织特化中的相关作用。

Deep learning deciphers the related role of master regulators and G-quadruplexes in tissue specification.

作者信息

Bashkatov Artem, Andreasyan Andrey, Konovalov Dmitry, Herbert Alan, Poptsova Maria

机构信息

International Laboratory of Bioinformatics, HSE University, Moscow, Russia.

InsideOutBio, Charlestown, MA, USA.

出版信息

Sci Rep. 2025 Jul 2;15(1):23119. doi: 10.1038/s41598-025-07579-1.

Abstract

G-quadruplexes (GQs) are non-canonical DNA structures encoded by G-flipons with potential roles in gene regulation and chromatin structure. Here, we explore the role of G-flipons in tissue specification. We present a deep learning-based framework for the genome-wide G-flipon predictions across 14 human tissue types. The model was trained using high-confidence experimental maps of GQ-forming sequences and ATAC-seq peaks, conjoined with the location of RNA polymerase, histone marks, and transcription factor binding sites. The training dataset for the DeepGQ model was derived from EndoQuad level 4-6 GQs. Model predictions were subsequently validated against the comprehensive EndoQuad dataset (levels 1-6) to optimize the whole-genome prediction threshold. To identify tissue-specific regulatory patterns, we classified GQ promoter predictions as either 'core' or 'tissue-specific'. We identified a notable overlap between predicted unique tissue-specific GQ sites and master regulatory genes (MRGs), tissue-specific DNase-hypersensitivity sites, and proteins that modulate R-loop formation. Collectively, the findings highlight the transactions between MRG and G-flipons intermediated by RNA: DNA hybrids associated with tissue specification.

摘要

G-四链体(GQs)是由G-翻转子编码的非经典DNA结构,在基因调控和染色质结构中具有潜在作用。在此,我们探讨G-翻转子在组织特化中的作用。我们提出了一个基于深度学习的框架,用于在14种人类组织类型中进行全基因组G-翻转子预测。该模型使用GQ形成序列和ATAC-seq峰的高置信度实验图谱进行训练,并结合RNA聚合酶、组蛋白标记和转录因子结合位点的位置。DeepGQ模型的训练数据集来自EndoQuad 4-6级的GQs。随后,根据全面的EndoQuad数据集(1-6级)对模型预测进行验证,以优化全基因组预测阈值。为了识别组织特异性调控模式,我们将GQ启动子预测分类为“核心”或“组织特异性”。我们在预测的独特组织特异性GQ位点与主调控基因(MRGs)、组织特异性DNase超敏位点以及调节R环形成的蛋白质之间发现了显著重叠。总的来说,这些发现突出了由与组织特化相关的RNA:DNA杂交体介导的MRG和G-翻转子之间的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e6c/12222854/0197e602ed76/41598_2025_7579_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验