Suppr超能文献

光合性能指数(PIabs)和丙二醛(MDA)含量决定了盐胁迫与调环酸钙处理共同作用下水稻的生物量。

Photosynthetic performance index (PIabs) and malondialdehyde (MDA) content determine rice biomass under combined salt stress and prohexadione-calcium treatment.

作者信息

Zuo Guanqiang, Mei Wanqi, Feng Naijie, Zheng Dianfeng

机构信息

College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China.

College of Natural Resources and Environment, Northwest A&F University, Xianyang, 712100, China.

出版信息

BMC Plant Biol. 2025 Jul 2;25(1):823. doi: 10.1186/s12870-025-06826-x.

Abstract

BACKGROUND

Plant growth regulators (PGRs) have proven effective in alleviating salt stress damage in crops, yet the predictive hierarchy of physiological traits governing biomass under combined salt-PGR regimes remains unclear. In this study, we applied random forest machine learning with variable importance measures to quantify the relative importance of key physiological traits - including photosynthetic rate (Pn), photosynthetic performance index (PIabs), electron transport rate (ETR), maximum photosystem II efficiency (Fv/Fm), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content- in rice subjected to NaCl (0.3%) and Prohexadione-Calcium (PCa) co-treatment. Using contrasting rice varieties (salt-sensitive 9311 and salt-tolerant Changmaogu), we measured physiological responses at 14 and 21 days after treatment (DAT).

RESULTS

The analysis revealed MDA content as a universal stress biomarker, showing consistent negative correlations with biomass in both varieties. Notably, our analysis revealed distinct genotype-specific Pn-biomass relationship. While the salt-sensitive 9311 showed positive Pn-biomass correlations (r = 0.34 at 14 DAT; r = 0.63 and p = 0.37 at 21 DAT), the tolerant Changmaogu displayed negative relationships (r = -0.15 at 14 DAT; r = -0.75 and p = 0.25 at 21 DAT). These opposing patterns underscore the challenges of relying solely on conventional correlation analysis for biomass prediction in different genetic backgrounds. The random forest model effectively addressed this complexity, identifying photosynthetic performance index (PIabs) and MDA content as the most robust predictors of biomass.

CONCLUSION

By integrating machine learning with traditional physiological analysis, this work provides valuable insights for rice breeding and management programs under saline conditions. The identification of PIabs and MDA as key biomarkers offers a practical framework for varietal selection. Particularly, PIabs serves as an effective positive selection marker, enabling rapid and non-destructive screening of salt-tolerant genotypes in large breeding populations.

摘要

背景

植物生长调节剂(PGRs)已被证明可有效减轻作物的盐胁迫损伤,但在盐 - PGR联合处理下,决定生物量的生理性状的预测层次仍不清楚。在本研究中,我们应用随机森林机器学习和变量重要性度量来量化关键生理性状的相对重要性,这些性状包括光合速率(Pn)、光合性能指数(PIabs)、电子传递速率(ETR)、最大光系统II效率(Fv/Fm)、超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量,研究对象为经氯化钠(0.3%)和调环酸钙(PCa)共同处理的水稻。使用对比鲜明的水稻品种(盐敏感型9311和耐盐型长茂谷),我们在处理后14天和21天(DAT)测量了生理反应。

结果

分析表明MDA含量是一种通用的胁迫生物标志物,在两个品种中均与生物量呈一致的负相关。值得注意的是,我们的分析揭示了不同基因型特异性的Pn - 生物量关系。盐敏感型9311在处理后14天显示出Pn与生物量的正相关(r = 0.34);在处理后21天,r = 0.63且p = 0.37。而耐盐型长茂谷则呈现负相关关系(处理后14天r = -0.15;处理后21天,r = -0.75且p = 0.25)。这些相反的模式突出了仅依靠传统相关分析来预测不同遗传背景下生物量的挑战。随机森林模型有效地解决了这种复杂性,将光合性能指数(PIabs)和MDA含量确定为生物量最可靠的预测指标。

结论

通过将机器学习与传统生理分析相结合,这项工作为盐渍条件下的水稻育种和管理计划提供了有价值的见解。将PIabs和MDA确定为关键生物标志物为品种选择提供了一个实用框架。特别是,PIabs作为一种有效的正向选择标记,能够在大型育种群体中快速、无损地筛选耐盐基因型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验