Liu Dingding, Zhang Chenyu, Ye Yuanyuan, Mei Piao, Gong Yang, Liu Zhen, Sun Chao, Zhao Xuecheng, Ding Shiqi, Chen Jiedan, Chen Liang, Ma Chunlei
National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
J Nanobiotechnology. 2025 Jul 2;23(1):481. doi: 10.1186/s12951-025-03533-5.
BACKGROUND: High-throughput genotyping technology has become an indispensable tool for advancing molecular breeding and genetic research in plants, facilitating large-scale exploration of genomic variation. Genotyping technology based on liquid-phase array utilizes streptavidin-coated nanomagnetic beads to capture biotin-modified probes, thereby capturing the target sequence on the genome, achieving the purpose of genotyping. This study aims to develop a novel liquid-phase for tea plant, which can be used for cultivar identification, genetic map construction, Quantitative Trait Locus (QTL) mapping of key agronomic traits in tea plants, and genetic evolution analysis. RESULT: We developed a highly efficient multiple-SNP array, the TEA5K mSNP array, which comprises 5,781 liquid-phase probes based on the Genotyping by Target Sequencing (GBTS) system. Using this array, we genotyped 231 developed tea cultivars, revealing that genetic similarity within the same cultivar ranged from 92.53-97.95%, whereas genetic similarity between different cultivars generally remained below 82.36%. Furthermore, utilizing this array, we constructed a high-density genetic map consisting of 3,274 markers, covering a total genetic distance of 2,225.19 cM, with an average marker interval of 0.76 cM. The high-resolution genetic map facilitated the identification of multiple QTLs linked to eight amino acid components, as well as two molecular markers strongly associated with the albino-leaf trait in the 'Huangjinya' cultivar, both mapped to chromosome 8. Moreover, we applied the array to analyze the population structure and phylogenetic relationships of 519 tea germplasm, classifying them into three major groups: wild accessions, landraces, and modern cultivars. Notably, modern cultivars exhibited lower genetic diversity compared to landraces. Additionally, we observed substantial genetic differentiation between wild resources and modern cultivars, with minimal to no gene flow from wild populations into domesticated cultivars. These findings suggest that modern tea breeding faces an "improvement bottleneck," a challenge similar to that encountered in other perennial crops. CONCLUSION: The TEA5K mSNP array is presented as a flexible, cost-effective, and low-maintenance genotyping tool that significantly enhances both genetic research and molecular breeding in tea plants. By providing a robust platform for genome-wide analysis and facilitating the identification of key QTLs, this tool offers valuable insights for improving the genetic diversity and agronomic performance of tea cultivars.
背景:高通量基因分型技术已成为推进植物分子育种和遗传研究的不可或缺的工具,有助于大规模探索基因组变异。基于液相芯片的基因分型技术利用链霉亲和素包被的纳米磁珠捕获生物素修饰的探针,从而捕获基因组上的目标序列,实现基因分型的目的。本研究旨在开发一种新型的茶树液相芯片,可用于品种鉴定、遗传图谱构建、茶树关键农艺性状的数量性状位点(QTL)定位以及遗传进化分析。 结果:我们开发了一种高效的多重SNP芯片,即TEA5K mSNP芯片,它基于目标序列基因分型(GBTS)系统包含5781个液相探针。使用该芯片,我们对231个育成的茶树品种进行了基因分型,结果表明同一品种内的遗传相似性在92.53%至97.95%之间,而不同品种之间的遗传相似性通常保持在82.36%以下。此外,利用该芯片,我们构建了一个由3274个标记组成的高密度遗传图谱,总遗传距离为2225.19厘摩,平均标记间隔为0.76厘摩。该高分辨率遗传图谱有助于鉴定与八种氨基酸成分相关的多个QTL,以及与‘黄金芽’品种白化叶性状紧密相关的两个分子标记,它们均位于第8号染色体上。此外,我们应用该芯片分析了519份茶树种质的群体结构和系统发育关系,将它们分为三个主要类群:野生种质、地方品种和现代品种。值得注意的是,现代品种的遗传多样性低于地方品种。此外,我们观察到野生资源与现代品种之间存在显著的遗传分化,野生群体向驯化品种的基因流动极少或没有。这些发现表明现代茶树育种面临着“改良瓶颈”,这与其他多年生作物所面临的挑战类似。 结论:TEA5K mSNP芯片是一种灵活、经济高效且维护成本低的基因分型工具,显著增强了茶树的遗传研究和分子育种。通过提供一个强大的全基因组分析平台并促进关键QTL的鉴定,该工具为提高茶树品种的遗传多样性和农艺性能提供了有价值的见解。
J Nanobiotechnology. 2025-7-2
Cochrane Database Syst Rev. 2022-3-2
Cochrane Database Syst Rev. 2021-4-19
Cochrane Database Syst Rev. 2018-2-6
Cochrane Database Syst Rev. 2017-12-22
Mol Genet Genomics. 2025-6-20
Cochrane Database Syst Rev. 2020-1-9
J Plant Physiol. 2025-3