Sun Jiazheng, Zeng Yulan
Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Front Med (Lausanne). 2025 Jun 18;12:1534903. doi: 10.3389/fmed.2025.1534903. eCollection 2025.
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive pulmonary disorder marked by the gradual substitution of lung tissue with fibrotic tissue, resulting in respiratory failure. While the precise etiology of IPF remains unclear, an increasing number of studies have indicated that programmed cell death (PCD) significantly contributes to the onset and advancement of IPF. PCD is implicated not only in the impairment of alveolar epithelial cells during fibrosis but also in the alterations of immune cells inside the fibrotic milieu. Investigating the PCD patterns offers a novel approach to the early diagnosis and prognostic evaluation of IPF. METHODS: The study utilized microarray-based transcriptome profiling and single-nucleus RNA sequencing to identify and analyze diverse PCD patterns in IPF. IPF-related genes were identified based on differential expression analysis, univariate Cox regression analysis, the "Scissor" program, and the "Findmarkers" program. A combination of machine learning was employed to develop stable predictive and diagnostic signatures associated with IPF, based on the filtered relevant genes. RESULTS: The stable PCDI.prog signature was established through the integration of 101 distinct machine-learning techniques, which exhibited superior efficacy in predicting outcomes in IPF patients through the validation of multiple datasets. Integrating PCDI.prog signature with patient clinical information, such as age, gender, and GAP score, enables the prediction of disease progression rates and patient survival. Additional PCDI.diag signature can offer insights into the early diagnosis of IPF. CONCLUSION: In summary, PCDI.prog signature and PCDI.diag signature offer critical insights for the early diagnosis, prognostic evaluation, and personalized treatment of IPF.
背景:特发性肺纤维化(IPF)是一种慢性进行性肺部疾病,其特征是肺组织逐渐被纤维组织替代,导致呼吸衰竭。虽然IPF的确切病因尚不清楚,但越来越多的研究表明,程序性细胞死亡(PCD)在IPF的发病和进展中起重要作用。PCD不仅与纤维化过程中肺泡上皮细胞的损伤有关,还与纤维化环境中免疫细胞的改变有关。研究PCD模式为IPF的早期诊断和预后评估提供了一种新方法。 方法:本研究利用基于微阵列的转录组分析和单核RNA测序来识别和分析IPF中的多种PCD模式。基于差异表达分析、单变量Cox回归分析、“Scissor”程序和“Findmarkers”程序鉴定IPF相关基因。基于筛选出的相关基因,采用机器学习组合方法开发与IPF相关的稳定预测和诊断特征。 结果:通过整合101种不同的机器学习技术建立了稳定的PCDI.prog特征,通过多个数据集的验证,该特征在预测IPF患者的预后方面表现出卓越的效能。将PCDI.prog特征与患者的临床信息(如年龄、性别和GAP评分)相结合,能够预测疾病进展率和患者生存率。另外,PCDI.diag特征可为IPF的早期诊断提供见解。 结论:总之,PCDI.prog特征和PCDI.diag特征为IPF的早期诊断、预后评估和个性化治疗提供了关键见解。
Commun Med (Lond). 2025-6-28
Cochrane Database Syst Rev. 2018-2-6
Cochrane Database Syst Rev. 2021-2-1
Health Technol Assess. 2006-9
Nat Cell Biol. 2023-3
Int J Genomics. 2022-11-14
Am J Cancer Res. 2022-8-15