Yan Zineng, Gao Weihang, Duan Yuyu, Zhou Hong, Ni Changmao, Huang Li, Ye Zhewei
Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
Bioact Mater. 2025 Jun 19;52:634-667. doi: 10.1016/j.bioactmat.2025.06.014. eCollection 2025 Oct.
Neural network functionality depends on the signaling of excitable cells and intricate synaptic connections, which collectively promote advanced functions of the brain, such as perception, motor control, and cognition. Neurological diseases may cause changes in the structure and connection patterns of neural networks, thereby leading to loss of motor and sensory functions. Neural interfaces are dependable tools for recording or stimulating neural circuit dynamics, but conventional neural implants do not align with the physicochemical characteristics of living tissues, resulting in eventual failure of these interface devices. These challenges in neuroengineering have spurred progress in materials science. In this account, we explore the interaction mechanisms between electrodes and biological tissues, offering strategies to meet the electrochemical and biocompatibility demands of bioelectronic interfaces in engineering, with an emphasis on the structural design and manufacturing technologies of implantable devices.
神经网络的功能依赖于可兴奋细胞的信号传导和复杂的突触连接,这些共同促进了大脑的高级功能,如感知、运动控制和认知。神经系统疾病可能会导致神经网络的结构和连接模式发生变化,从而导致运动和感觉功能丧失。神经接口是记录或刺激神经回路动态的可靠工具,但传统的神经植入物与活组织的物理化学特性不匹配,导致这些接口设备最终失效。神经工程中的这些挑战推动了材料科学的进步。在本综述中,我们探讨了电极与生物组织之间的相互作用机制,提供了满足工程中生物电子接口的电化学和生物相容性要求的策略,重点是可植入设备的结构设计和制造技术。