Pathak Ishwor, Acharya Debendra, Chhetri Kisan, Rosyara Yagya Raj, Kim Taewoo, Ko Tae Hoon, Kim Hak Yong
Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea.
Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal.
ACS Appl Mater Interfaces. 2025 Jul 16;17(28):40443-40456. doi: 10.1021/acsami.5c06979. Epub 2025 Jul 3.
Designing robust and cost-effective bifunctional electrocatalysts is crucial for sustainable hydrogen production. Given that platinum (Pt) is the benchmark catalyst for HER, minimizing its usage while maximizing the catalytic performance is highly desirable. Herein, we design a unique nanoarchitecture of cobalt-based double MOFs by varying the solvent and ligand, followed by selenosulfidation to develop a selenium-doped CoS/CoS heterointerface. Subsequently, we employ a facile method to incorporate platinum single atoms (Pt) into the designed catalyst, further modulating its electronic structure. The resulting Pt/Se-DM-CoS/CoS@CC exhibits an ultralow overpotential of 28.0 mV and Tafel slope of 35.6 mV dec for HER, outperforming the catalysts without Pt and even the benchmark Pt/C. For OER, the catalyst requires an overpotential of 232.7 mV with a Tafel slope of 66.4 mV dec, comparable to the benchmark IrO. The catalysts maintained stable performance for over 100 h at high current densities for both HER and OER. Furthermore, the full cell water-splitting device requires cell voltages of 1.50 and 1.79 V to achieve 10 and 100 mA cm, respectively, surpassing the benchmark system. Notably, the device operates continuously for over 100 h at 100 mA cm, with a calculated Faradaic efficiency of ∼100%. This work not only provides a unique approach for designing double-MOF derived catalysts but also presents a facile approach for Pt loading, enabling the efficient utilization of Pt at minimal cost while achieving high performance.
设计坚固且具有成本效益的双功能电催化剂对于可持续制氢至关重要。鉴于铂(Pt)是析氢反应(HER)的基准催化剂,在尽量减少其用量的同时最大化催化性能是非常可取的。在此,我们通过改变溶剂和配体设计了一种独特的钴基双金属有机框架(MOF)纳米结构,随后进行硒硫化以形成硒掺杂的CoS/CoS异质界面。随后,我们采用一种简便的方法将铂单原子(Pt)掺入所设计的催化剂中,进一步调节其电子结构。所得的Pt/Se-DM-CoS/CoS@CC在HER中表现出28.0 mV的超低过电位和35.6 mV dec的塔菲尔斜率,优于不含Pt的催化剂甚至基准Pt/C。对于析氧反应(OER),该催化剂需要232.7 mV的过电位和66.4 mV dec的塔菲尔斜率,与基准IrO相当。该催化剂在HER和OER的高电流密度下保持稳定性能超过100小时。此外,全电池水分解装置分别需要1.50和1.79 V的电池电压才能达到10和100 mA cm,超过了基准系统。值得注意的是,该装置在100 mA cm下连续运行超过100小时,计算得出的法拉第效率约为100%。这项工作不仅为设计双MOF衍生催化剂提供了一种独特的方法,还提出了一种简便的Pt负载方法,能够以最低成本高效利用Pt同时实现高性能。