Suppr超能文献

通过基于放射基因组学的多组学方法解析肿瘤微环境,以预测非小细胞肺癌免疫治疗的结果。

Unraveling the tumor-microenvironment through a radiogenomic-based multiomic approach to predict outcomes of immunotherapy in non-small cell lung cancer.

作者信息

Jeong Dong Young, Joe Cheol Yong, Lee Sang Min, Park Sehhoon, Moon Seung Hwan, Choi Joon Young, Kim Jonghoon, Lee Se-Hoon, Lee Ho Yun

机构信息

Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea.

Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea; Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea.

出版信息

Comput Methods Programs Biomed. 2025 Sep;269:108915. doi: 10.1016/j.cmpb.2025.108915. Epub 2025 Jun 14.

Abstract

BACKGROUND

The tumor microenvironment (TME) plays a critical role in influencing immune checkpoint inhibitor (ICI) therapy outcomes in advanced non-small cell lung cancer (NSCLC). This study aimed to develop a radiomics model reflecting an ICI-favorable TME based on whole transcriptome sequencing (WTS).

METHODS

This multi-center retrospective cohort study included training (n = 120), internal validation (n = 319), and external validation (n = 150) cohorts of advanced NSCLC patients who received ICI as first- or second-line therapy. The radiomics model (rTME) was developed based on the TME score, which reflected ICI-favorable immune cell compositions. The model's performance was assessed using the C-index, and survival outcomes were also evaluated.

RESULTS

In the training cohort, high rTME scores were associated with significantly prolonged progression-free survival (PFS) (median 4.1 vs. 2.9 months, p = 0.024) and overall survival (OS) (median 15.0 vs. 8.4 months, p = 0.030). Similar trends were observed in the internal validation cohort for PFS (median 3.3 vs. 2.1 months, p = 0.004) and OS (median 13.9 vs. 7.3 months, p = 0.004), as well as in the external validation cohort for OS (median 15.5 vs. 7.3 months, p = 0.008). Integrating clinical variables improved predictive accuracy in both the training and internal validation cohorts.

CONCLUSION

Our radiomics model, reflecting the ICI-favorable immune cell expression in the TME, showed a positive association with ICI outcomes in NSCLC patients. Integrating radiomics and clinical variables enhances prognostic accuracy, demonstrating the model's potential utility in guiding ICI therapy decisions.

摘要

背景

肿瘤微环境(TME)在影响晚期非小细胞肺癌(NSCLC)的免疫检查点抑制剂(ICI)治疗结果中起着关键作用。本研究旨在基于全转录组测序(WTS)开发一种反映ICI有利TME的放射组学模型。

方法

这项多中心回顾性队列研究纳入了接受ICI作为一线或二线治疗的晚期NSCLC患者的训练队列(n = 120)、内部验证队列(n = 319)和外部验证队列(n = 150)。基于反映ICI有利免疫细胞组成的TME评分开发放射组学模型(rTME)。使用C指数评估模型的性能,并评估生存结果。

结果

在训练队列中,高rTME评分与显著延长的无进展生存期(PFS)(中位值4.1个月对2.9个月,p = 0.024)和总生存期(OS)(中位值15.0个月对8.4个月,p = 0.030)相关。在内部验证队列的PFS(中位值3.3个月对2.1个月,p = 0.004)和OS(中位值13.9个月对7.3个月,p = 0.004)以及外部验证队列的OS(中位值15.5个月对7.3个月,p = 0.008)中观察到类似趋势。整合临床变量提高了训练队列和内部验证队列中的预测准确性。

结论

我们的放射组学模型反映了TME中ICI有利的免疫细胞表达,在NSCLC患者中与ICI结果呈正相关。整合放射组学和临床变量可提高预后准确性,证明了该模型在指导ICI治疗决策中的潜在效用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验