文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于代谢功能障碍相关脂肪性肝病超声诊断的机器学习进展:深度学习的光明未来。

Update of machine learning for ultrasound diagnosis of metabolic dysfunction-associated steatotic liver disease: a bright future for deep learning.

作者信息

Li Jiawen, Chen Jianhui, Zeng Xiaohong, Lyu Guorong, Lin Shu, He Shaozheng

机构信息

Department of Ultrasound, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.

Department of Health Care, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.

出版信息

PeerJ. 2025 Jun 30;13:e19645. doi: 10.7717/peerj.19645. eCollection 2025.


DOI:10.7717/peerj.19645
PMID:40611943
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12225632/
Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common liver disease and the burden is increasing around the world. Ultrasound diagnosis of MASLD is the preferred method due to its convenience, absence of radiation, and high accuracy. The application of artificial intelligence (AI) in MASLD diagnosis has been explored across electronic medical records, laboratory tests, ultrasound and radiographic imaging, and liver histopathological data. Notably, AI's application in ultrasound diagnosis has garnered significant attention. Deep learning (DL), known for its exceptional image recognition and classification capabilities, has become a focal point in ultrasound research. This paper reviews and analyzes the application of various machine learning (ML) algorithms in the ultrasound diagnosis of MASLD, highlighting the advantages and potential of AI in this field. It is intended for clinicians, AI researchers, and healthcare innovators, aiming to enhance diagnostic accuracy, expand MASLD screening in primary care, and support early diagnosis, prevention, and treatment.

摘要

代谢功能障碍相关脂肪性肝病(MASLD)是最常见的肝脏疾病,其全球负担正在增加。由于超声检查具有便捷、无辐射且准确性高的特点,因此是MASLD诊断的首选方法。人工智能(AI)在MASLD诊断中的应用已在电子病历、实验室检查、超声和放射影像学以及肝脏组织病理学数据等方面进行了探索。值得注意的是,AI在超声诊断中的应用已引起了广泛关注。深度学习(DL)以其卓越的图像识别和分类能力而闻名,已成为超声研究的焦点。本文回顾并分析了各种机器学习(ML)算法在MASLD超声诊断中的应用,突出了AI在该领域的优势和潜力。本文面向临床医生、AI研究人员和医疗保健创新者,旨在提高诊断准确性,扩大基层医疗中MASLD的筛查范围,并支持早期诊断、预防和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62f2/12225632/2f72aef6d92c/peerj-13-19645-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62f2/12225632/6f2d30edd5d5/peerj-13-19645-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62f2/12225632/2c1d80e88ab1/peerj-13-19645-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62f2/12225632/2f72aef6d92c/peerj-13-19645-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62f2/12225632/6f2d30edd5d5/peerj-13-19645-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62f2/12225632/2c1d80e88ab1/peerj-13-19645-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62f2/12225632/2f72aef6d92c/peerj-13-19645-g003.jpg

相似文献

[1]
Update of machine learning for ultrasound diagnosis of metabolic dysfunction-associated steatotic liver disease: a bright future for deep learning.

PeerJ. 2025-6-30

[2]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[3]
Metabolic dysfunction-associated steatotic liver disease: A story of muscle and mass.

World J Gastroenterol. 2025-5-28

[4]
Extracellular vesicles as biomarkers for metabolic dysfunction-associated steatotic liver disease staging using explainable artificial intelligence.

World J Gastroenterol. 2025-6-14

[5]
Modeling the health and economic impact of pharmacologic therapies for MASLD in the United States.

J Hepatol. 2025-1-18

[6]
Dietary manganese intake is positively associated with metabolic dysfunction-associated steatotic liver disease: a multicohort study.

Eur J Nutr. 2025-5-26

[7]
Applications of artificial intelligence (AI) in researches on non-alcoholic fatty liver disease(NAFLD) : A systematic review.

Rev Endocr Metab Disord. 2022-6

[8]
Machine Learning, Deep Learning, and Mathematical Models to Analyze Forecasting and Epidemiology of COVID-19: A Systematic Literature Review.

Int J Environ Res Public Health. 2022-4-22

[9]
Application of artificial intelligence techniques for non-alcoholic fatty liver disease diagnosis: A systematic review (2005-2023).

Comput Methods Programs Biomed. 2024-2

[10]
Synergizing advanced algorithm of explainable artificial intelligence with hybrid model for enhanced brain tumor detection in healthcare.

Sci Rep. 2025-7-1

本文引用的文献

[1]
Large-scale benchmarking and boosting transfer learning for medical image analysis.

Med Image Anal. 2025-5

[2]
Prospective comparative diagnostic performance of quantitative ultrasound parameters for the measurement of hepatic steatosis in a biopsy-proven metabolic dysfunction associated steatotic liver disease cohort.

Br J Radiol. 2025-1-1

[3]
Deep Learning With Ultrasound Images Enhance the Diagnosis of Nonalcoholic Fatty Liver.

Ultrasound Med Biol. 2024-11

[4]
MASLD: a systemic metabolic disorder with cardiovascular and malignant complications.

Gut. 2024-3-7

[5]
Improving nonalcoholic fatty liver disease classification performance with latent diffusion models.

Sci Rep. 2023-12-7

[6]
The Future Is Beyond Bright: The Evolving Role of Quantitative US for Fatty Liver Disease.

Radiology. 2023-11

[7]
Comparison of Radiologists and Deep Learning for US Grading of Hepatic Steatosis.

Radiology. 2023-10

[8]
A multisociety Delphi consensus statement on new fatty liver disease nomenclature.

J Hepatol. 2023-12

[9]
Non-invasive evaluation of liver steatosis with imaging modalities: New techniques and applications.

World J Gastroenterol. 2023-5-7

[10]
Noninvasive assessment of paediatric hepatic steatosis by using attenuation imaging.

Eur Radiol. 2023-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索