文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习、深度学习和数学模型分析 COVID-19 的预测和流行病学:系统文献回顾。

Machine Learning, Deep Learning, and Mathematical Models to Analyze Forecasting and Epidemiology of COVID-19: A Systematic Literature Review.

机构信息

Department of Information System, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

出版信息

Int J Environ Res Public Health. 2022 Apr 22;19(9):5099. doi: 10.3390/ijerph19095099.


DOI:10.3390/ijerph19095099
PMID:35564493
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9099605/
Abstract

COVID-19 is a disease caused by SARS-CoV-2 and has been declared a worldwide pandemic by the World Health Organization due to its rapid spread. Since the first case was identified in Wuhan, China, the battle against this deadly disease started and has disrupted almost every field of life. Medical staff and laboratories are leading from the front, but researchers from various fields and governmental agencies have also proposed healthy ideas to protect each other. In this article, a Systematic Literature Review (SLR) is presented to highlight the latest developments in analyzing the COVID-19 data using machine learning and deep learning algorithms. The number of studies related to Machine Learning (ML), Deep Learning (DL), and mathematical models discussed in this research has shown a significant impact on forecasting and the spread of COVID-19. The results and discussion presented in this study are based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Out of 218 articles selected at the first stage, 57 met the criteria and were included in the review process. The findings are therefore associated with those 57 studies, which recorded that CNN (DL) and SVM (ML) are the most used algorithms for forecasting, classification, and automatic detection. The importance of the compartmental models discussed is that the models are useful for measuring the epidemiological features of COVID-19. Current findings suggest that it will take around 1.7 to 140 days for the epidemic to double in size based on the selected studies. The 12 estimates for the basic reproduction range from 0 to 7.1. The main purpose of this research is to illustrate the use of ML, DL, and mathematical models that can be helpful for the researchers to generate valuable solutions for higher authorities and the healthcare industry to reduce the impact of this epidemic.

摘要

COVID-19 是由 SARS-CoV-2 引起的疾病,由于其迅速传播,世界卫生组织已宣布其为全球大流行。自中国武汉首次发现该病例以来,抗击这种致命疾病的战斗已经打响,并扰乱了几乎所有生活领域。医护人员和实验室在前线带头,但来自各个领域和政府机构的研究人员也提出了相互保护的健康理念。在本文中,进行了系统文献综述(SLR),以突出使用机器学习和深度学习算法分析 COVID-19 数据的最新进展。与机器学习(ML),深度学习(DL)和数学模型相关的研究数量表明,它们对预测和 COVID-19 的传播具有重大影响。本研究中提出的结果和讨论是基于 PRISMA(系统评价和荟萃分析的首选报告项目)指南的。在第一阶段选择的 218 篇文章中,有 57 篇符合标准并被纳入审查过程。因此,研究结果与这 57 项研究相关,这些研究表明,用于预测,分类和自动检测的最常用算法是 CNN(DL)和 SVM(ML)。所讨论的房室模型的重要性在于,这些模型可用于衡量 COVID-19 的流行病学特征。根据选定的研究,当前的研究结果表明,基于所选研究,该疾病的规模大约需要 1.7 到 140 天才能翻倍。基本繁殖率的 12 个估计值在 0 到 7.1 之间。本研究的主要目的是说明可以帮助研究人员为上级和医疗保健行业生成有价值的解决方案,以减轻这种流行病影响的 ML,DL 和数学模型的使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/47904e31b08f/ijerph-19-05099-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/8fbe51d85124/ijerph-19-05099-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/17b7e32ef1b8/ijerph-19-05099-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/3fa67b88993e/ijerph-19-05099-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/cf3a72c4aca9/ijerph-19-05099-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/59761e1da38e/ijerph-19-05099-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/017212a8f841/ijerph-19-05099-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/fc1a86a19bd3/ijerph-19-05099-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/d74796917811/ijerph-19-05099-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/27b612816dad/ijerph-19-05099-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/47904e31b08f/ijerph-19-05099-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/8fbe51d85124/ijerph-19-05099-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/17b7e32ef1b8/ijerph-19-05099-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/3fa67b88993e/ijerph-19-05099-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/cf3a72c4aca9/ijerph-19-05099-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/59761e1da38e/ijerph-19-05099-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/017212a8f841/ijerph-19-05099-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/fc1a86a19bd3/ijerph-19-05099-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/d74796917811/ijerph-19-05099-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/27b612816dad/ijerph-19-05099-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/9099605/47904e31b08f/ijerph-19-05099-g010.jpg

相似文献

[1]
Machine Learning, Deep Learning, and Mathematical Models to Analyze Forecasting and Epidemiology of COVID-19: A Systematic Literature Review.

Int J Environ Res Public Health. 2022-4-22

[2]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[3]
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.

Cochrane Database Syst Rev. 2022-7-22

[4]
Antibody tests for identification of current and past infection with SARS-CoV-2.

Cochrane Database Syst Rev. 2022-11-17

[5]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[6]
Home treatment for mental health problems: a systematic review.

Health Technol Assess. 2001

[7]
Measures implemented in the school setting to contain the COVID-19 pandemic.

Cochrane Database Syst Rev. 2022-1-17

[8]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[9]
The clinical effectiveness and cost-effectiveness of enzyme replacement therapy for Gaucher's disease: a systematic review.

Health Technol Assess. 2006-7

[10]
Surveillance of Barrett's oesophagus: exploring the uncertainty through systematic review, expert workshop and economic modelling.

Health Technol Assess. 2006-3

引用本文的文献

[1]
StatModPredict: A user-friendly R-Shiny interface for fitting and forecasting with statistical models.

PLoS One. 2025-8-7

[2]
An overview of reviews on digital health interventions during COVID- 19 era: insights and lessons for future pandemics.

Arch Public Health. 2025-5-9

[3]
Mathematical Contact Tracing Models for the COVID-19 Pandemic: A Systematic Review of the Literature.

Healthcare (Basel). 2025-4-18

[4]
Covid-19, Diagnostic History and Mortality from Medicare 1999-2021, In an All-Cause Mortality Approach.

Arch Intern Med Res. 2023

[5]
Transmission models of respiratory infections in carceral settings: A systematic review.

Epidemics. 2025-3

[6]
Ensemble machine learning framework for predicting maternal health risk during pregnancy.

Sci Rep. 2024-9-14

[7]
Real-time infectious disease endurance indicator system for scientific decisions using machine learning and rapid data processing.

PeerJ Comput Sci. 2024-7-30

[8]
Prediction of tuberculosis clusters in the riverine municipalities of the Brazilian Amazon with machine learning.

Rev Bras Epidemiol. 2024

[9]
DeepDynaForecast: Phylogenetic-informed graph deep learning for epidemic transmission dynamic prediction.

PLoS Comput Biol. 2024-4-10

[10]
Artificial intelligence-driven prediction of COVID-19-related hospitalization and death: a systematic review.

Front Public Health. 2023

本文引用的文献

[1]
COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients.

Comput Biol Med. 2022-6

[2]
Gauging the Impact of Artificial Intelligence and Mathematical Modeling in Response to the COVID-19 Pandemic: A Systematic Review.

Biomed Res Int. 2022

[3]
The Spread of SARS-CoV-2 Variant Omicron with a Doubling Time of 2.0-3.3 Days Can Be Explained by Immune Evasion.

Viruses. 2022-1-30

[4]
COVID-19 Detection in CT/X-ray Imagery Using Vision Transformers.

J Pers Med. 2022-2-18

[5]
COVID-19 Detection in Chest X-ray Images Using a New Channel Boosted CNN.

Diagnostics (Basel). 2022-1-21

[6]
The effects of super spreading events and movement control measures on the COVID-19 pandemic in Malaysia.

Sci Rep. 2022-2-9

[7]
Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management.

Socioecon Plann Sci. 2022-3

[8]
Bayesian Inference of State-Level COVID-19 Basic Reproduction Numbers across the United States.

Viruses. 2022-1-15

[9]
Automated detection of COVID-19 through convolutional neural network using chest x-ray images.

PLoS One. 2022

[10]
COVID-19 detection using chest X-ray images based on a developed deep neural network.

SLAS Technol. 2022-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索