Wang Jinsong, Raes Bart, Debrabandere Cato, van Aken Veerle, Jaramillo-Toro Sebastián, Waldherr Steffen, Horemans Benjamin, Springael Dirk
Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Heverlee B-3001, Belgium.
Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, The Netherlands; UNLOCK, Wageningen University & Research / Delft University of Technology, 6708 PB, Wageningen, The Netherlands.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf140.
Bioaugmentation of sand filters is an alternative process for eliminating organic micropollutants in drinking water treatment. Bioaugmentation resembles an invasion process and niche availability is a prime determinant for successful invasion. This is particularly relevant for bioaugmentation of oligotrophic environments where organic micropollutants (OMPs) hardly provide a selective C-source and exploitative competition for the scarce intrinsic organic carbon exists between inoculated OMP-degraders and resident microbiota. Building on microbial invasion theories, we tested the hypothesis that the success of bioaugmentation and associated OMP degradation can be enhanced through niche creation by supplying a selective carbon source for the introduced degrader. Sand filter microbiota reduced growth of the 2,6-dichlorobenzamide degrading strain Aminobacter niigataensis MSH1 and 2,6-dichlorobenzamide degradation in different natural waters. This was counteracted by adding benzamide as a selective C-source for MSH1 resulting in a 3-fold faster 2,6-dichlorobenzamide biodegradation and a 6-fold increase in MSH1 growth. An additive biokinetic model underpredicted growth of MSH1 in the presence of sand filter microbiota suggesting that the community, despite its overall negative effect, supported MSH1 growth. Moreover, benzamide retarded 2,6-dichlorobenzamide degradation likely due to enzyme competitive inhibition. The results demonstrate the use of deliberately creating dedicated niches selective for the inoculum and the successful translation of ecological invasion theories into microbial community management, for improved bioaugmentation of complex communities.
砂滤器的生物强化是饮用水处理中去除有机微污染物的一种替代方法。生物强化类似于一个入侵过程,生态位可用性是成功入侵的主要决定因素。这对于贫营养环境的生物强化尤为重要,在贫营养环境中,有机微污染物(OMPs)几乎不能提供选择性碳源,接种的OMP降解菌与原生微生物群之间存在对稀缺的固有有机碳的利用性竞争。基于微生物入侵理论,我们测试了这样一个假设,即通过为引入的降解菌提供选择性碳源来创造生态位,可以提高生物强化的成功率和相关的OMP降解。砂滤器微生物群在不同天然水中降低了2,6 - 二氯苯甲酰胺降解菌株新泻氨基杆菌MSH1的生长以及2,6 - 二氯苯甲酰胺的降解。通过添加苯甲酰胺作为MSH1的选择性碳源可以抵消这种影响,从而使2,6 - 二氯苯甲酰胺的生物降解速度加快3倍,MSH1的生长增加6倍。一个加和生物动力学模型在存在砂滤器微生物群的情况下对MSH1的生长预测偏低,这表明该群落尽管总体上有负面影响,但仍支持MSH1的生长。此外,苯甲酰胺可能由于酶竞争性抑制而延缓了2,6 - 二氯苯甲酰胺的降解。结果表明,可以通过故意为接种物创造专用的选择性生态位,并将生态入侵理论成功转化为微生物群落管理,以改善复杂群落的生物强化。