Suppr超能文献

用于胎盘全切片图像中原型零样本病变检索的自监督深度度量学习

Self-supervised deep metric learning for prototypical zero-shot lesion retrieval in placenta whole-slide images.

作者信息

Faure Gaspar, Soglio Dorothée Dal, Patey Natalie, Oligny Luc, Girard Sylvie, Séoud Lama

机构信息

Department of Computer Engineering, Polytechnique Montréal, 2500 chemin de Polytechnique, Montréal, H3T0A3, Québec, Canada; Sainte-Justine Hospital Research Center, 3175, chemin de la Côte-Sainte-Catherine, Montréal, H3T1C5, Québec, Canada.

Department of Pathology, Sainte-Justine Hospital, 3175, chemin de la Côte-Sainte-Catherine, Montréal, H3T1C5, Québec, Canada.

出版信息

Comput Biol Med. 2025 Sep;196(Pt A):110634. doi: 10.1016/j.compbiomed.2025.110634. Epub 2025 Jul 3.

Abstract

Postnatal adverse outcomes can often be explained and predicted by the pathological evaluation of the placenta after a pregnancy. However, placenta whole-slide image (WSI) analysis is not performed systematically due to the specialized skills required. There is no public dataset available for placenta WSIs and precise annotations on private datasets are very limited. Furthermore, we show that in this context of low data regime and scarcity of expert annotations, current computational pathology foundation models struggle to generalize to the specific case of the placental tissue. We propose a new deep metric learning (DML)-based method for efficient inflammatory lesion retrieval in placenta WSIs in very low data settings. We train a feature extractor without labels by adapting an existing self-supervised learning framework to the DML problem setting. Once trained, the feature extractor is used to define prototype vectors for inflammatory lesions, using a very limited number of known pathological patches extracted from a single placenta. We can then retrieve inflammatory lesions in unseen WSIs by comparing patches with prototype vectors in the feature extractor's metric space. The similarity map thus obtained is then refined using a simple post-processing method to take into account spatial patch proximity. We evaluated our method on a private dataset of 165 annotated WSIs (51 placentas) and on the CAMELYON16 dataset for lymph node metastasis retrieval. We achieved a patch-level AUROC of 0.978 on our dataset and 0.928 on CAMELYON16 in the zero-shot setting.

摘要

产后不良结局通常可以通过孕期后胎盘的病理评估来解释和预测。然而,由于所需的专业技能,胎盘全切片图像(WSI)分析并未系统地进行。目前没有公开的胎盘WSI数据集,而私有数据集上的精确注释非常有限。此外,我们表明,在这种数据量少且专家注释稀缺的情况下,当前的计算病理学基础模型难以推广到胎盘组织的具体案例。我们提出了一种新的基于深度度量学习(DML)的方法,用于在极低数据设置下高效检索胎盘WSI中的炎症病变。我们通过将现有的自监督学习框架应用于DML问题设置来训练无标签的特征提取器。训练完成后,使用从单个胎盘中提取的非常有限数量的已知病理切片,特征提取器用于定义炎症病变的原型向量。然后,我们可以通过在特征提取器的度量空间中将切片与原型向量进行比较,在未见的WSI中检索炎症病变。然后,使用一种简单的后处理方法对由此获得的相似性图进行细化,以考虑空间切片的接近度。我们在一个包含165个注释WSI(51个胎盘)的私有数据集以及用于淋巴结转移检索的CAMELYON16数据集上评估了我们的方法。在零样本设置下,我们在我们的数据集上实现了切片级AUROC为0.978,在CAMELYON16上为0.928。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验