Nath Sunil
Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Biosystems. 2025 Jul 2:105527. doi: 10.1016/j.biosystems.2025.105527.
The synthesis of adenosine triphosphate (ATP), the universal biological currency, by oxidative phosphorylation and photophosphorylation catalyzed by the FF-ATP synthase is the fundamental means of cellular energy generation in animals, plants, and microorganisms. Since the ocean area and the amount of biomass is very large, the formation of ATP and its utilization by the myriad energy-consuming processes in the cell is the principal net chemical reaction taking place on the surface of the earth. This is indeed a most important reaction. How exactly does it occur? Since the development of the famous colorimetric assay for measurement of inorganic phosphate (Pi) in 1925, followed by the discovery of ATP in 1929, an enormous amount of research has been done to understand these intracellular energy-linked processes. I present an account of the major developments on ATP synthesis and hydrolysis in a century of research, and summarize the current state of knowledge. My account focuses on the fields of bioenergetics, muscle contraction, and motility in cell life, and covers key aspects of metabolic disease, mitochondrial apoptosis, and cell death in relation to ATP and the ATP synthase, and the permeability transition pore. It includes developments at molecular, cellular, and macroscopic levels-ascending into ecology-thanks to the conservative nature of metabolic pathways, with ATP as the universal intermediate in the coupled reactions of biological energy transduction. New, emerging sub-fields on ATP and the Warburg Effect, purinergic signaling, condensates and the role of ATP as a biological hydrotope are discussed briefly, and possible applications in aging and precision medicine are foreseen. I have divided the subject matter into the following five eras to cover the vast ground. (i)-the beginning era of the 1920s (Section 2), (ii)-an era of trials and trails of the 1930s ‒ 1940s (Sections 3.1 ‒ 3.5), (iii)-an era of population-based biochemistry and enzymology in the 1950s ‒ 1980s (Sections 4.1 ‒ 4.9), (iv)-a high-tech era of the 1990s ‒ 2020s of high-resolution structural and single-molecule studies, but also an interdisciplinary era of systems biology that integrates approaches from physics, chemistry, biology, mathematics, and engineering (Sections 5.1 ‒ 5.15), (v)-future prospects (Section 6). The article works out new explanations-with quantitative equations or physical criteria developed for the first time-that may help resolve longstanding issues in muscle contraction, bioenergetics, and transport. My tryst with ATP during 35-years of research is also described, and the search for a theory with greater numerical accuracy is emphasized. Errors of previous theories are identified and corrected, and apparent contradictions are resolved. The aim is to explain and correctly interpret the cumulative experimental record, check for consistency of theory with experiment, remove the inconsistencies in previous theories, and arrive at a unified molecular theory of energy coupling, transduction, ATP synthesis, and ATP hydrolysis. To conclude, a number of recommendations for the progress of scientific research in interdisciplinary and multidisciplinary areas have been made.
由F₀F₁ -ATP合酶催化的氧化磷酸化和光合磷酸化作用合成三磷酸腺苷(ATP),即通用的生物货币,是动物、植物和微生物细胞产生能量的基本方式。由于海洋面积和生物量非常大,ATP的形成及其在细胞内众多耗能过程中的利用是发生在地球表面的主要净化学反应。这确实是一个极其重要的反应。它究竟是如何发生的呢?自1925年著名的比色法用于测定无机磷酸盐(Pi),随后在1929年发现ATP以来,人们进行了大量研究以了解这些细胞内与能量相关的过程。我将阐述一个世纪以来ATP合成与水解方面的主要进展,并总结当前的知识状况。我的阐述聚焦于生物能量学领域、肌肉收缩以及细胞生命活动中的运动性,涵盖了与ATP和ATP合酶相关的代谢疾病、线粒体凋亡和细胞死亡的关键方面,以及通透性转换孔。由于代谢途径具有保守性,ATP作为生物能量转导偶联反应中的通用中间体,因此本文内容涵盖了分子、细胞和宏观层面的进展——甚至上升到生态学层面。文中简要讨论了关于ATP与瓦伯格效应、嘌呤能信号传导、凝聚物以及ATP作为生物亲水位点作用的新兴子领域,并预见了其在衰老和精准医学中的可能应用。我将主题内容划分为以下五个时代以涵盖广阔的领域。(i)20世纪20年代的起始时代(第2节),(ii)20世纪30年代至40年代的试验与探索时代(第3.1至3.5节),(iii)20世纪50年代至80年代基于群体的生物化学和酶学时代(第4.1至4.9节),(iv)20世纪90年代至2020年代的高科技时代,这是高分辨率结构和单分子研究的时代,也是整合了物理学、化学、生物学、数学和工程学方法的系统生物学跨学科时代(第5.1至5.15节),(v)未来展望(第6节)。本文给出了新的解释——首次提出了定量方程或物理标准——这可能有助于解决肌肉收缩、生物能量学和运输方面长期存在的问题。文中还描述了我在35年研究中与ATP的不解之缘,并强调了寻求具有更高数值准确性的理论。识别并纠正了先前理论中的错误,解决了明显的矛盾。目的是解释并正确解读累积的实验记录,检验理论与实验的一致性,消除先前理论中的不一致之处,从而得出能量偶联、转导、ATP合成和ATP水解的统一分子理论。最后,针对跨学科和多学科领域的科学研究进展提出了一些建议。