Suppr超能文献

相互连接的纳米受限孔隙网络增强了电化反应捕获中催化剂与一氧化碳的相互作用。

Interconnected nanoconfining pore networks enhance catalyst CO interaction in electrified reactive capture.

作者信息

Liu Hengzhou, An Lun, Wang Peiyao, Yu Christine, Zhang Jie, Shin Heejong, Peng Bosi, Li Jiantao, Li Matthew, An Hongmin, Yu Jiaqi, Chen Yuanjun, Wang Peiying, Lee Kug-Seung, Lalit Kanika, Liu Zeyan, Farha Omar K, Huang Wenyu, Liu Jefferson Zhe, Qi Long, Xie Ke, Sargent Edward H

机构信息

Department of Chemistry, Northwestern University, Evanston, IL, USA.

U.S. DOE Ames National Laboratory, Iowa State University, Ames, IA, USA.

出版信息

Nat Commun. 2025 Jul 4;16(1):6185. doi: 10.1038/s41467-025-61407-8.

Abstract

Systems that sequentially capture and upgrade CO from air to fuels/fuel-intermediates, such as syngas and ethylene, rely on an energy-intensive CO release process. Electrified reactive capture systems transform CO obtained directly from carbonate capture liquid into products. Previous reactive capture systems show a decline in Faradaic efficiencies (FE) at current densities above 200 mA/cm. Here we show the chemical origins of this problem, finding that prior electrocatalyst designs failed to arrest, activate, and reduce in situ-generated CO (i-CO) before it traversed the catalyst layer and entered the tailgas stream. We develop a templated synthesis to define pore structures and the sites of Ni single atoms, and find that carbon-nitrogen-based nanopores are effective in accumulating i-CO via short-range, non-electrostatic interactions between CO molecules and the nanochannel walls. These interactions confine and enrich i-CO within the pores, enhancing its binding and activation. We report as a result carbonate electrolysis at 300 mA/cm with FE to CO of 50% ± 3%, and with <1% CO in the tailgas outlet stream. This corresponds to a projected energy efficiency (EE) to 2:1 syngas of 46% at 300 mA/cm when H is added using a water electrolyzer.

摘要

将空气中的一氧化碳(CO)依次捕获并升级为燃料/燃料中间体(如合成气和乙烯)的系统,依赖于一个能源密集型的CO释放过程。电化学生反应捕获系统将直接从碳酸盐捕获液中获得的CO转化为产物。先前的化学反应捕获系统在电流密度高于200 mA/cm²时,法拉第效率(FE)会下降。在此,我们揭示了这个问题的化学根源,发现之前的电催化剂设计未能在原位生成的CO(i-CO)穿过催化剂层并进入尾气之前将其捕获、活化和还原。我们开发了一种模板合成方法来定义孔隙结构和镍单原子的位点,发现碳氮基纳米孔通过CO分子与纳米通道壁之间的短程非静电相互作用有效地积累i-CO。这些相互作用将i-CO限制并富集在孔隙内,增强其结合和活化。结果表明,在300 mA/cm²的电流密度下,碳酸盐电解生成CO的FE为50%±3%,尾气出口流中的CO含量<1%。当使用水电解槽添加氢气时,这对应于在300 mA/cm²的电流密度下,生成合成气比例为2:1时的预计能源效率(EE)为46%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e27/12227553/d42394645cdb/41467_2025_61407_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验