Liu Hengzhou, An Lun, Wang Peiyao, Yu Christine, Zhang Jie, Shin Heejong, Peng Bosi, Li Jiantao, Li Matthew, An Hongmin, Yu Jiaqi, Chen Yuanjun, Wang Peiying, Lee Kug-Seung, Lalit Kanika, Liu Zeyan, Farha Omar K, Huang Wenyu, Liu Jefferson Zhe, Qi Long, Xie Ke, Sargent Edward H
Department of Chemistry, Northwestern University, Evanston, IL, USA.
U.S. DOE Ames National Laboratory, Iowa State University, Ames, IA, USA.
Nat Commun. 2025 Jul 4;16(1):6185. doi: 10.1038/s41467-025-61407-8.
Systems that sequentially capture and upgrade CO from air to fuels/fuel-intermediates, such as syngas and ethylene, rely on an energy-intensive CO release process. Electrified reactive capture systems transform CO obtained directly from carbonate capture liquid into products. Previous reactive capture systems show a decline in Faradaic efficiencies (FE) at current densities above 200 mA/cm. Here we show the chemical origins of this problem, finding that prior electrocatalyst designs failed to arrest, activate, and reduce in situ-generated CO (i-CO) before it traversed the catalyst layer and entered the tailgas stream. We develop a templated synthesis to define pore structures and the sites of Ni single atoms, and find that carbon-nitrogen-based nanopores are effective in accumulating i-CO via short-range, non-electrostatic interactions between CO molecules and the nanochannel walls. These interactions confine and enrich i-CO within the pores, enhancing its binding and activation. We report as a result carbonate electrolysis at 300 mA/cm with FE to CO of 50% ± 3%, and with <1% CO in the tailgas outlet stream. This corresponds to a projected energy efficiency (EE) to 2:1 syngas of 46% at 300 mA/cm when H is added using a water electrolyzer.
将空气中的一氧化碳(CO)依次捕获并升级为燃料/燃料中间体(如合成气和乙烯)的系统,依赖于一个能源密集型的CO释放过程。电化学生反应捕获系统将直接从碳酸盐捕获液中获得的CO转化为产物。先前的化学反应捕获系统在电流密度高于200 mA/cm²时,法拉第效率(FE)会下降。在此,我们揭示了这个问题的化学根源,发现之前的电催化剂设计未能在原位生成的CO(i-CO)穿过催化剂层并进入尾气之前将其捕获、活化和还原。我们开发了一种模板合成方法来定义孔隙结构和镍单原子的位点,发现碳氮基纳米孔通过CO分子与纳米通道壁之间的短程非静电相互作用有效地积累i-CO。这些相互作用将i-CO限制并富集在孔隙内,增强其结合和活化。结果表明,在300 mA/cm²的电流密度下,碳酸盐电解生成CO的FE为50%±3%,尾气出口流中的CO含量<1%。当使用水电解槽添加氢气时,这对应于在300 mA/cm²的电流密度下,生成合成气比例为2:1时的预计能源效率(EE)为46%。