Suppr超能文献

预测艾滋病毒感染者的生活质量:一种整合多维决定因素的机器学习模型。

Predicting Quality of Life in People Living with HIV: A Machine Learning Model Integrating Multidimensional Determinants.

作者信息

Xie Meilian, Zhang Zhiyun, Yu Yanping, Zhang Li, Zhang Jieli, Wu Dongxia

机构信息

Nursing Management Department, Beijing Ditan Hospital, Capital Medical University, Beijing, China.

Beijing Home of Red Ribbon, Beijing Ditan Hospital Capital Medical University, Beijing, China.

出版信息

Health Qual Life Outcomes. 2025 Jul 4;23(1):68. doi: 10.1186/s12955-025-02398-4.

Abstract

OBJECTIVE

With survival steadily improving among people living with HIV(PLWH), quality of life (QoL) has emerged as the ultimate benchmark of therapeutic success. We therefore aimed to develop and validate machine learning models that predict QoL trend in PLWH, identifying key determinants to inform personalized interventions and optimize long-term well-being.

METHODS

In this longitudinal observational study, PLWH were recruited from March 2024 to December 2024. Sociodemographic and clinical variables were collected, and the 31-item WHOQOL-HIV BREF was adopted as the QoL measure. The symptom experience was assessed using the Self-Report Symptom Scale (SRSS). All variables were incorporated into machine learning models to develop predictive algorithms.

RESULTS

This study included 676 eligible participants with HIV in the cohort. The Gaussian Process (GP) model demonstrated the highest testing AUC of 0.811 and 0.815 in the training dataset. The GP model excels in metrics such as accuracy, AUC, recall, precision, F1 score, Kappa, MCC, Log Loss, and Brier score. In the decision curve analysis (DCA), the five machine learning models exhibited similar net benefits over a broad range of threshold probabilities (ranging from 0.2 to 0.8) compared to the Random Forest (RF) model. The GP and the MLP showed enhanced net benefits at intermediate to high threshold probabilities (30 ~ 60%). The SHAP technique identified the top four predictors of QoL, ranked by importance, with symptom burden being highlighted as the most critical predictor variable.

CONCLUSIONS

The machine-learning model, predominantly a GP model, demonstrated the better predictive performance among the six models evaluated, for detecting the QoL predictor in PLWH, indicating that symptom burden influences QoL level. Our findings highlight a non-linear relationship between ART duration and QoL, with diminished well-being during mid-treatment (6 ~ 10 years) linked to treatment fatigue and cumulative toxicities, emphasizing the necessity of dynamic psychosocial support and tailored interventions to sustain long-term QoL in HIV care.

摘要

目的

随着艾滋病毒感染者(PLWH)的生存率稳步提高,生活质量(QoL)已成为治疗成功的最终基准。因此,我们旨在开发并验证可预测PLWH生活质量趋势的机器学习模型,确定关键决定因素以指导个性化干预并优化长期健康状况。

方法

在这项纵向观察性研究中,于2024年3月至2024年12月招募PLWH。收集社会人口统计学和临床变量,并采用31项世界卫生组织生活质量HIV简表(WHOQOL-HIV BREF)作为生活质量衡量指标。使用自我报告症状量表(SRSS)评估症状体验。将所有变量纳入机器学习模型以开发预测算法。

结果

本研究队列中有676名符合条件的HIV感染者。高斯过程(GP)模型在训练数据集中的测试AUC最高,分别为0.811和0.815。GP模型在准确性、AUC、召回率、精确率、F1分数、卡帕值、MCC、对数损失和布里尔分数等指标上表现出色。在决策曲线分析(DCA)中,与随机森林(RF)模型相比,五个机器学习模型在广泛的阈值概率范围(从0.2到0.8)内表现出相似的净效益。GP和多层感知器(MLP)在中高阈值概率(30%至60%)时显示出更高的净效益。SHAP技术确定了生活质量的前四大预测因素,按重要性排序,症状负担被突出为最关键的预测变量。

结论

机器学习模型,主要是GP模型,在评估的六个模型中表现出更好的预测性能,用于检测PLWH中的生活质量预测因素,表明症状负担会影响生活质量水平。我们的研究结果突出了抗逆转录病毒治疗(ART)持续时间与生活质量之间的非线性关系,治疗中期(6至10年)幸福感下降与治疗疲劳和累积毒性有关,强调了动态心理社会支持和量身定制干预措施对于维持HIV护理中长期生活质量的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94fb/12228405/b80dd18081f1/12955_2025_2398_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验