Guo Xiaotian, Gao Rui-Ting, Ren Shijie, Nguyen Nhat Truong, Chen Haojie, Wu Limin, Wang Lei
College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia Key Laboratory of Low Carbon Catalysis, Inner Mongolia University, Hohhot, 010021, China.
Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montreal, QC, H3G 2W1, Canada.
Nat Commun. 2025 Jul 5;16(1):6220. doi: 10.1038/s41467-025-61080-x.
Photoelectrochemical production of ammonia usually suffers from a low solar-to-ammonia efficiency and a high overpotential, which influences the bias-free operation of sustainable photoelectrochemistry. Herein, we realize solar-driven ammonia production from waste nitrate by constructing copper-osmium catalysts deposited on the Sb(S,Se) semiconductor, enabling optimized photo-carrier transport pathways and a beneficial co-adsorption configuration of *NO-HO moieties. The photocathode reaches a photocurrent density of 5.6 mA cm at 0 V with a low onset potential of 0.86 V and a Faradaic efficiency of 96.98% at 0.6 V under AM 1.5 G illumination. We further employ glycerol oxidation reaction on ruthenium doped bismuth oxide catalyst decorated on titanium oxide photoanode, requiring an onset potential of 0.3 V to enable bias-free operation. The unbiased photoelectrochemical system shows Faradaic efficiencies of over 97% for ammonia products and above 77% for glycerol oxidation product under AM 1.5 G illumination. The large-sized photoelectrodes maintain a stability for 24 h without noticeable degradation. Our works indicate that unassisted and stable PEC ammonia production is feasible with in situ glycerol valorization using the photoanode and photocathode.
氨的光电化学制备通常存在太阳能到氨的效率低和过电位高的问题,这影响了可持续光电化学的无偏压运行。在此,我们通过构建沉积在Sb(S,Se)半导体上的铜-锇催化剂,实现了利用废硝酸盐进行太阳能驱动的氨生产,优化了光载流子传输路径,并形成了*NO-HO基团的有利共吸附构型。在AM 1.5 G光照下,该光阴极在0 V时的光电流密度达到5.6 mA cm,起始电位低至0.86 V,在0.6 V时的法拉第效率为96.98%。我们进一步在氧化钛光阳极上装饰的钌掺杂氧化铋催化剂上进行甘油氧化反应,起始电位为0.3 V以实现无偏压运行。在AM 1.5 G光照下,无偏压光电化学系统对氨产物的法拉第效率超过97%,对甘油氧化产物的法拉第效率高于77%。大型光电极保持24小时的稳定性,没有明显降解。我们的工作表明,使用光阳极和光阴极通过原位甘油增值实现无辅助且稳定的光电化学氨生产是可行的。