Suppr超能文献

利用SHAP揭示膝关节形态:通过可解释人工智能塑造个性化医疗。

Unveiling knee morphology with SHAP: shaping personalized medicine through explainable AI.

作者信息

Cansiz Berke, Arslan Serdar, Gültekin Muhammet Zeki, Serbes Gorkem

机构信息

Department of Biomedical Engineering, Yildiz Technical University, Esenler, Istanbul 34220, Turkey.

Department of Physiotherapy and Rehabilitation, Faculty of Nezehat Keleşoğlu Health Science, Necmettin Erbakan University, Konya, Turkey.

出版信息

Knee. 2025 Oct;56:415-430. doi: 10.1016/j.knee.2025.06.012. Epub 2025 Jul 5.

Abstract

PURPOSE

This study aims to enhance personalized medical assessments and the early detection of knee-related pathologies by examining the relationship between knee morphology and demographic factors such as age, gender, and body mass index. Additionally, gender-specific reference values for knee morphological features will be determined using explainable artificial intelligence (XAI).

METHODS

A retrospective analysis was conducted on the MRI data of 500 healthy knees aged 20-40 years. The study included various knee morphological features such as Distal Femoral Width (DFW), Lateral Femoral Condyler Width (LFCW), Intercondylar Femoral Width (IFW), Anterior Cruciate Ligament Width (ACLW), and Anterior Cruciate Ligament Length (ACLL). Machine learning models, including Decision Trees, Random Forests, Light Gradient Boosting, Multilayer Perceptron, and Support Vector Machines, were employed to predict gender based on these features. The SHapley Additive exPlanation was used to analyze feature importance.

RESULTS

The learning models demonstrated high classification performance, with 83.2% (±5.15) for classification of clusters based on morphological feature and 88.06% (±4.8) for gender classification. These results validated that the strong correlation between knee morphology and gender.

CONCLUSION

The study found that DFW is the most significant feature for gender prediction, with values below 78-79 mm range indicating females and values above this range indicating males. LFCW, IFW, ACLW, and ACLL also showed significant gender-based differences. The findings establish gender-specific reference values for knee morphological features, highlighting the impact of gender on knee morphology. These reference values can improve the accuracy of diagnoses and treatment plans tailored to each gender, enhancing personalized medical care.

摘要

目的

本研究旨在通过研究膝关节形态与年龄、性别和体重指数等人口统计学因素之间的关系,加强个性化医疗评估以及膝关节相关病变的早期检测。此外,将使用可解释人工智能(XAI)确定膝关节形态特征的性别特异性参考值。

方法

对500例年龄在20至40岁的健康膝关节的MRI数据进行回顾性分析。该研究包括各种膝关节形态特征,如股骨远端宽度(DFW)、股骨外侧髁宽度(LFCW)、股骨髁间宽度(IFW)、前交叉韧带宽度(ACLW)和前交叉韧带长度(ACLL)。使用包括决策树、随机森林、轻梯度提升、多层感知器和支持向量机在内的机器学习模型,根据这些特征预测性别。使用SHapley加法解释来分析特征重要性。

结果

学习模型显示出较高的分类性能,基于形态特征的聚类分类准确率为83.2%(±5.15),性别分类准确率为88.06%(±4.8)。这些结果证实了膝关节形态与性别之间的强相关性。

结论

该研究发现DFW是性别预测中最重要的特征,低于78 - 79毫米范围的值表明为女性,高于此范围的值表明为男性。LFCW、IFW、ACLW和ACLL也显示出显著的性别差异。研究结果建立了膝关节形态特征的性别特异性参考值,突出了性别对膝关节形态的影响。这些参考值可以提高针对每种性别的诊断和治疗计划的准确性,加强个性化医疗护理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验