Suppr超能文献

用于解码细胞衰老分子格局的多组学策略。

Multi-omics strategies to decode the molecular landscape of cellular senescence.

作者信息

Basilicata Manuela Giovanna, Sommella Eduardo, Scisciola Lucia, Tortorella Giovanni, Malavolta Marco, Giordani Chiara, Barbieri Michelangela, Campiglia Pietro, Paolisso Giuseppe

机构信息

Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.

Department of Pharmacy, University of Salerno, Fisciano, SA, Italy.

出版信息

Ageing Res Rev. 2025 Sep;111:102824. doi: 10.1016/j.arr.2025.102824. Epub 2025 Jul 5.

Abstract

Cellular senescence is a conserved cellular program characterized by a permanent cell cycle arrest triggered by a variety of stressors. Originally described as a tumor-suppressive mechanism, it is now recognized to exert pleiotropic and context-dependent functions, contributing to key physiological processes such as embryogenesis and tissue repair, as well as to processes associated with aging and the development of age-related diseases. Unlike normal cells, senescent cells remain metabolically active despite their non-dividing state. They significantly impact their environment through the Senescence-Associated Secretory Phenotype (SASP), a complex mix of cytokines, growth factors, and proteases. This secretory profile can promote tissue repair and regeneration but, if persistent, contributes to chronic inflammation, fibrosis, and tissue dysfunction. Two major pathways primarily regulate senescence: the p53/p21 and p16^INK4a^/Rb axes. These respond to stress signals like DNA damage, oxidative stress, and oncogenic activation, enforcing stable cell cycle arrest to prevent uncontrolled proliferation. However, as senescent cells accumulate over time, their ongoing SASP activity disrupts tissue homeostasis, driving inflammation and age-related diseases. Recent advances in multi-omics technologies, including metabolomics, proteomics, and lipidomics, have provided deeper insights into the complex molecular changes within senescent cells, revealing new biomarkers and potential therapeutic targets. These approaches offer a comprehensive understanding of cellular senescence, but challenges remain in distinguishing the causal relationships within these data and translating findings into clinical applications. This review integrates recent multi-omics discoveries, highlighting their potential to refine our understanding of senescence and support the development of targeted interventions to extend healthspan and combat age-related pathologies.

摘要

细胞衰老 是一种保守的细胞程序,其特征是由多种应激源触发的永久性细胞周期停滞。最初被描述为一种肿瘤抑制机制,现在人们认识到它具有多效性且依赖于环境的功能,有助于胚胎发育和组织修复等关键生理过程,以及与衰老和年龄相关疾病发展相关的过程。与正常细胞不同,衰老细胞尽管处于非分裂状态,但仍保持代谢活性。它们通过衰老相关分泌表型(SASP)显著影响其周围环境,SASP是细胞因子、生长因子和蛋白酶的复杂混合物。这种分泌谱可以促进组织修复和再生,但如果持续存在,则会导致慢性炎症、纤维化和组织功能障碍。两条主要途径主要调节衰老:p53/p21和p16^INK4a^/Rb轴。这些途径对DNA损伤、氧化应激和致癌激活等应激信号作出反应,强制细胞周期稳定停滞以防止不受控制的增殖。然而,随着衰老细胞随时间积累,它们持续的SASP活性会破坏组织稳态,引发炎症和与年龄相关的疾病。包括代谢组学、蛋白质组学和脂质组学在内的多组学技术的最新进展,为深入了解衰老细胞内的复杂分子变化提供了更深刻的见解,揭示了新的生物标志物和潜在的治疗靶点。这些方法提供了对细胞衰老的全面理解,但在区分这些数据中的因果关系以及将研究结果转化为临床应用方面仍然存在挑战。本综述整合了最近的多组学发现,强调了它们在完善我们对衰老的理解以及支持开发有针对性的干预措施以延长健康寿命和对抗与年龄相关的病理方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验