Kotla Sivareddy, Lee Jonghae, Ko Kyung Ae, Chen Weiqing, Samanthapudi Venkata Subrahmanya Kumar, Hoang Oanh, Mejia Gilbert F, Li Shengyu, Schadler Keri L, Rivera Luis Antonio, Imanishi Masaki, Samperio Kay Carlene Tavares, Kim Jung Hyun, Ostos-Mendoza Kelia C, Mariscal-Reyes Karla N, Deswal Anita, Cooke John P, Fujiwara Keigi, Palaskas Nicolas L, Koutroumpakis Efstratios, Gi Young Jin, Pathania Rajneesh, Morrell Criag, Lorenzi Philip L, Tan Lin, Madhmud Iqbal, Hanssen Nordin M J, Yvan-Charvet Laurent, Chini Eduardo N, Herrmann Joerg, Vasquez Hernan G, Shen Ying H, Martin James F, Xu Haodong, Seeley Erin H, Burks Jared K, Brookes Paul S, Wang Guangyu, Le Nhat-Tu, Abe Jun-Ichi
bioRxiv. 2025 Jun 21:2025.06.19.660635. doi: 10.1101/2025.06.19.660635.
Atherothrombosis, the main event leading to acute coronary syndrome (ACS), is strongly linked to disturbed blood flow (d-flow) regions. Although the involvement of the Hippo pathway and its kinases Large Tumor Suppressor Kinase 1and 2 (LATS 1 and 2) in mechanical stress responses is known, the mechanisms by which d-flow simultaneously induces senescence, proliferation, and atherothrombosis remain unclear.
The role of endothelial cells (EC)-specific LATS1/2 was examined using EC specific knock-out (EKO) mice in a partial left carotid ligation (PLCL) model. Plaque spatial multi-omics analysis was performed by integrating imaging mass cytometry, sequential immunofluorescence (COMET™), and spatial metabolomics at the single-cell level in human and mouse atherosclerotic plaques.
In tamoxifen-inducible / EC-specific knockout (EKO) mice, deletion of LATS1/2 induced by tamoxifen led to fatal outcomes, characterized by severe systemic edema and markedly increased vascular permeability. In contrast, / -/- -EKO mice survived and developed atherothrombotic plaques exhibiting neovascularization even without further additional dietary or genetic intervention. Spatial proteomics analysis revealed that LATS1/2 depletion in ECs triggered a senescence-associated stemness (SAS) phenotype, primarily driven by CD38 upregulation. Complementary spatial metabolomics profiling demonstrated a significant increase in sulfite and taurine within LATS1/2-deficient plaques, indicating lowered sulfite oxidase (SUOX) activity. Mechanistically, CD38 upregulation was found to suppress SUOX expression, induce the reverse mode of mitochondrial complex V, and increase succinate dehydrogenase (SDH) activity along with ATP consumption. Paradoxically, despite ATP depletion, this metabolic disturbance enhanced glutamate metabolism and the tricarboxylic acid (TCA) cycle, sustaining EC proliferation under energetically stressed conditions. The combined effect of LATS1/2 deletion and CD38 activation established a unique EC phenotype defined by increased SAS, leading to proliferation, senescence, and eventual cell death. These pathological processes culminated in the formation of atherothrombotic plaques, which were attenuated by inhibition of CD38. Notably, a similar phenotype-marked by metabolically active ECs-was observed in human atherothrombotic plaques, suggesting translational relevance.
Loss of LATS1/2 in ECs induces SAS state that promotes excessive EC proliferation, senescent cell accumulation, and the development of structurally fragile, leaky neo vessels-hallmarks of atherothrombotic lesions. CD38-mediated SUOX deficiency further amplifies this pathological process by inducing mitochondrial dysfunction, depleting ATP, and triggering compensatory upregulation of glutamate and TCA cycle metabolism. These findings identify a novel LATS1/2-CD38-SUOX axis in ECs that orchestrates SAS-driven atherothrombosis. Targeting CD38 may represent a promising therapeutic strategy to mitigate vascular dysfunction and plaque instability in high-risk ACS patients.
Under normal physiological conditions, LATS1/2 and Lamin A work together to suppress CD38 expression. Lamin A binds directly to the CD38 promoter to repress transcription, and LATS1/2 interact with Lamin A to reinforce this suppression. This collaboration helps maintain low CD38 activity and preserves cellular NAD⁺ levels. However, under disturbed flow (d-flow), both LATS1/2 and Lamin A are downregulated. The loss of this dual repression leads to increased CD38 NADase expression. Elevated CD38 accelerates NAD⁺ consumption, causing NAD⁺ depletion-a hallmark of cellular senescence. Reduced NAD⁺ disrupts key metabolic and stress-response pathways, contributing to the onset of the senescent state. At the same time, CD38 suppresses sulfite oxidase (SUOX), leading to sulfite accumulation and mitochondrial redox imbalance. This shift activates the reverse mode of mitochondrial Complex V, which decreases ATP production and increases mitochondrial ROS, intensifying metabolic and oxidative stress in endothelial cells (ECs). In response, ECs compensate by upregulating succinate dehydrogenase (SDH), enhancing TCA cycle activity and glutamate metabolism. This metabolic adaptation provides the biosynthetic building blocks needed for cell growth and proliferation. As a result, ECs adopt a paradoxical phenotype: they show classical features of stress-induced senescence (such as NAD⁺ depletion, oxidative stress, and cell cycle arrest signals), while simultaneously undergoing metabolic activation and proliferation, also mediated by YAP. This defines a non-canonical endothelial program known as senescence-associated stemness (SAS), characterized by the formation of abnormal, proliferative, yet fragile neovessels. These dysfunctional vessels contribute to atherothrombosis, setting this process apart from the more stable lesions typical of conventional atherosclerosis.
动脉粥样硬化血栓形成是导致急性冠状动脉综合征(ACS)的主要事件,与血流紊乱(d-flow)区域密切相关。尽管已知河马通路及其激酶大肿瘤抑制激酶1和2(LATS 1和2)参与机械应激反应,但d-flow同时诱导衰老、增殖和动脉粥样硬化血栓形成的机制仍不清楚。
在部分左颈动脉结扎(PLCL)模型中,使用内皮细胞(EC)特异性敲除(EKO)小鼠研究EC特异性LATS1/2的作用。通过整合成像质谱细胞术、序贯免疫荧光(COMET™)和人及小鼠动脉粥样硬化斑块单细胞水平的空间代谢组学进行斑块空间多组学分析。
在他莫昔芬诱导的EC特异性敲除(EKO)小鼠中,他莫昔芬诱导的LATS1/2缺失导致致命后果,表现为严重的全身性水肿和血管通透性显著增加。相比之下,EC特异性敲除(EKO)小鼠存活并形成了动脉粥样硬化血栓形成斑块,即使没有进一步的饮食或基因干预也出现了新生血管形成。空间蛋白质组学分析表明,EC中LATS1/2的缺失触发了衰老相关干性(SAS)表型,主要由CD38上调驱动。互补的空间代谢组学分析表明,LATS1/2缺陷斑块中的亚硫酸盐和牛磺酸显著增加,表明亚硫酸盐氧化酶(SUOX)活性降低。从机制上讲,发现CD38上调会抑制SUOX表达,诱导线粒体复合物V的反向模式,并增加琥珀酸脱氢酶(SDH)活性以及ATP消耗。矛盾的是,尽管ATP消耗,但这种代谢紊乱增强了谷氨酸代谢和三羧酸(TCA)循环,在能量应激条件下维持EC增殖。LATS1/2缺失和CD38激活的联合作用建立了一种独特的EC表型,其特征是SAS增加,导致增殖、衰老和最终细胞死亡。这些病理过程最终导致动脉粥样硬化血栓形成斑块的形成,通过抑制CD38可使其减轻。值得注意的是,在人类动脉粥样硬化血栓形成斑块中观察到了类似的以代谢活跃的EC为特征的表型,表明具有转化相关性。
EC中LATS1/2的缺失诱导SAS状态,促进EC过度增殖、衰老细胞积累以及结构脆弱、渗漏的新生血管的形成,这些是动脉粥样硬化血栓形成病变的标志。CD38介导的SUOX缺乏通过诱导线粒体功能障碍、消耗ATP以及触发谷氨酸和TCA循环代谢的代偿性上调进一步放大了这一病理过程。这些发现确定了EC中一个新的LATS1/2-CD38-SUOX轴,该轴协调SAS驱动的动脉粥样硬化血栓形成。靶向CD38可能代表一种有前景的治疗策略,以减轻高危ACS患者的血管功能障碍和斑块不稳定性。
在正常生理条件下,LATS1/2和核纤层蛋白A共同抑制CD38表达。核纤层蛋白A直接与CD38启动子结合以抑制转录,LATS1/2与核纤层蛋白A相互作用以加强这种抑制。这种协作有助于维持低CD38活性并保持细胞NAD⁺水平。然而,在血流紊乱(d-flow)条件下,LATS1/2和核纤层蛋白A均下调。这种双重抑制的丧失导致CD38 NADase表达增加。CD38升高加速NAD⁺消耗,导致NAD⁺耗竭——细胞衰老的标志。NAD⁺减少破坏关键的代谢和应激反应途径,导致衰老状态的开始。同时,CD38抑制亚硫酸盐氧化酶(SUOX),导致亚硫酸盐积累和线粒体氧化还原失衡。这种转变激活线粒体复合物V的反向模式,减少ATP产生并增加线粒体ROS,加剧内皮细胞(EC)中的代谢和氧化应激。作为回应,EC通过上调琥珀酸脱氢酶(SDH)进行补偿,增强TCA循环活性和谷氨酸代谢。这种代谢适应提供了细胞生长和增殖所需的生物合成构件。结果,EC呈现出一种矛盾的表型:它们表现出应激诱导衰老的经典特征(如NAD⁺耗竭、氧化应激和细胞周期停滞信号),同时也经历由YAP介导的代谢激活和增殖。这定义了一种非经典的内皮程序,称为衰老相关干性(SAS),其特征是形成异常、增殖但脆弱的新生血管。这些功能失调的血管促成动脉粥样硬化血栓形成,使这一过程有别于传统动脉粥样硬化中更稳定的病变。