Suppr超能文献

心脏结节病中的人工智能:心电图、超声心动图、心肺运动试验和磁共振成像

Artificial intelligence in cardiac sarcoidosis: ECG, Echo, CPET and MRI.

作者信息

Umeojiako Wilfred Ifeanyi, Lüscher Thomas, Sharma Rakesh

机构信息

Royal Brompton and Harefield Hospitals, part of Guy's and St Thomas' NHS Foundation Trust.

King's College London School of Cardiovascular Medicine and Sciences.

出版信息

Curr Opin Pulm Med. 2025 Sep 1;31(5):534-539. doi: 10.1097/MCP.0000000000001193. Epub 2025 Jul 7.

Abstract

PURPOSE OF REVIEW

Cardiac sarcoidosis is a form of inflammatory cardiomyopathy that varies in its clinical presentation. It is associated with significant clinical complications such as high-degree atrioventricular block, ventricular tachycardia, heart failure and sudden cardiac death. It is challenging to diagnose clinically, and its increasing detection rate may represent increasing awareness of the disease by clinicians as well as a rising incidence. Prompt diagnosis and risk stratification reduces morbidity and mortality from cardiac sarcoidosis. Noninvasive diagnostic modalities such as ECG, echocardiography, PET/computed tomography (PET/CT) and cardiac MRI (cMRI) are increasingly playing important roles in cardiac sarcoidosis diagnosis. Artificial intelligence driven applications are increasingly being applied to these diagnostic modalities to improve the detection of cardiac sarcoidosis.

RECENT FINDINGS

Review of the recent literature suggests artificial intelligence based algorithms in PET/CT and cMRIs can predict cardiac sarcoidosis as accurately as trained experts, however, there are few published studies on artificial intelligence based algorithms in ECG and echocardiography.

SUMMARY

The impressive advances in artificial intelligence have the potential to transform patient screening in cardiac sarcoidosis, aid prompt diagnosis and appropriate risk stratification and change clinical practice.

摘要

综述目的

心脏结节病是一种炎症性心肌病,临床表现各异。它与严重的临床并发症相关,如高度房室传导阻滞、室性心动过速、心力衰竭和心源性猝死。临床诊断具有挑战性,其检出率的增加可能代表临床医生对该疾病的认识提高以及发病率上升。及时诊断和风险分层可降低心脏结节病的发病率和死亡率。心电图、超声心动图、正电子发射断层扫描/计算机断层扫描(PET/CT)和心脏磁共振成像(cMRI)等非侵入性诊断方法在心脏结节病诊断中发挥着越来越重要的作用。人工智能驱动的应用越来越多地应用于这些诊断方法,以提高心脏结节病的检测率。

最新发现

对近期文献的回顾表明,PET/CT和cMRI中基于人工智能的算法能够像训练有素的专家一样准确预测心脏结节病,然而,关于心电图和超声心动图中基于人工智能的算法的已发表研究较少。

总结

人工智能的显著进展有可能改变心脏结节病患者的筛查方式,有助于及时诊断和适当的风险分层,并改变临床实践。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验