O'Keeffe Michael, Treacy Michael M J
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.
Department of Physics, Arizona State University, Tempe, Arizona 85287, USA.
Acta Crystallogr A Found Adv. 2025 Sep 1;81(Pt 5):381-388. doi: 10.1107/S2053273325004802. Epub 2025 Jul 7.
We provide a systematic account using symmetry and coordinates to explore symmetric (vertex- and edge-transitive) 3-periodic weavings of piecewise linear threads. The dia-w graph, derived from the diamond structure, generates an infinite family of supersymmetric 3-periodic thread weaves - a unique property shared only with the 2-periodic sql-w family of fabric weaves. Additionally, we describe a selection of symmetric 3-periodic, 3-coordinated weavings related to the srs graph and a supersymmetric Borromean weave of hcb graphs.
我们使用对称性和坐标提供了一个系统的描述,以探索分段线性线的对称(顶点和边传递)3周期编织。从菱形结构导出的dia-w图生成了一个无限的超对称3周期线编织族——这是仅与2周期sql-w织物编织族共有的独特属性。此外,我们描述了与srs图相关的一组对称3周期、3坐标编织以及hcb图的超对称博罗梅安编织。