Broti Nawara Mahmood, Iwasaki Masaki, Ono Yumie
Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, Kawasaki, Kanagawa Japan.
Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan.
Biomed Eng Lett. 2025 May 27;15(4):677-692. doi: 10.1007/s13534-025-00480-w. eCollection 2025 Jul.
Accurate identification of seizure onset zones (SOZ) is essential for the surgical treatment of epilepsy. This narrative review examines recent advances in machine learning approaches for SOZ localization using intracranial electroencephalography (iEEG) data. Existing studies are analyzed while addressing key questions: What machine learning techniques are used for SOZ localization? How effective are these methods? What are the limitations, and what solutions can drive further progress in the field? This narrative review examined peer-reviewed studies that employed machine learning techniques for SOZ localization using iEEG data. The selected studies were analyzed to identify trends in machine learning applications, performance metrics, benefits, and challenges associated with SOZ identification. The review highlights the increasing adoption of machine learning for SOZ localization, mostly with supervised approaches. Particularly support vector machine (SVM) using high frequency oscillation (HFO) biomarker feature being the most prevalent. High accuracy and sensitivity, especially in studies with smaller sample sizes are reported. However, patient-wise validation reveals limited generalizability. Additionally, ambiguity in SOZ definition and the scarcity of open-access iEEG datasets continue to hinder progress and reproducibility in the field. Machine learning offers significant potential for advancing SOZ localization. Development of more robust algorithms, integration of multimodal data, and greater model interpretability, can improve model reliability, ensure consistency, and enhance real-world applicability, thereby transforming the future of SOZ localization.
准确识别癫痫发作起始区(SOZ)对于癫痫的外科治疗至关重要。这篇叙述性综述探讨了使用颅内脑电图(iEEG)数据进行SOZ定位的机器学习方法的最新进展。在分析现有研究的同时,解决了以下关键问题:用于SOZ定位的机器学习技术有哪些?这些方法的效果如何?存在哪些局限性,以及哪些解决方案可以推动该领域的进一步发展?这篇叙述性综述考察了使用iEEG数据并采用机器学习技术进行SOZ定位的同行评审研究。对所选研究进行分析,以确定机器学习应用的趋势、性能指标、与SOZ识别相关的益处和挑战。该综述强调了机器学习在SOZ定位中的应用日益增加,主要采用监督方法。特别是使用高频振荡(HFO)生物标志物特征的支持向量机(SVM)最为普遍。报告显示具有较高的准确性和敏感性,尤其是在样本量较小的研究中。然而,患者层面的验证显示泛化性有限。此外,SOZ定义的模糊性以及开放获取iEEG数据集的稀缺性继续阻碍该领域的进展和可重复性。机器学习为推进SOZ定位提供了巨大潜力。开发更强大的算法、整合多模态数据以及提高模型的可解释性,可以提高模型的可靠性、确保一致性并增强实际适用性,从而改变SOZ定位的未来。