Mapkar Sahil A, Bliss Sarah A, Perez Carbajal Edgar E, Murray Sean H, Li Zhiru, Wilson Anna K, Piprode Vikrant, Lee You Jin, Kirsch Thorsten, Petroff Katerina S, Liu Fengyuan, Wosczyna Michael N
Musculoskeletal Research Center, Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY, USA.
Department of Biomedical Engineering, Tandon College of Engineering, New York University, Brooklyn, NY, USA.
Nat Commun. 2025 Jul 7;16(1):6231. doi: 10.1038/s41467-025-60975-z.
Cellular senescence is an irreversible state of cell cycle arrest with a complex role in tissue repair, aging, and disease. However, inconsistencies in identifying cellular senescence have led to varying conclusions about their functional significance. We developed a machine learning-based approach that uses nuclear morphometrics to identify senescent cells at single-cell resolution. By applying unsupervised clustering and dimensional reduction techniques, we built a robust pipeline that distinguishes senescent cells in cultured systems, freshly isolated cell populations, and tissue sections. Here we show that this method reveals dynamic, age-associated patterns of senescence in regenerating skeletal muscle and osteoarthritic articular cartilage. Our approach offers a broadly applicable strategy to map and quantify senescent cell states in diverse biological contexts, providing a means to readily assess how this cell fate contributes to tissue remodeling and degeneration across lifespan.
细胞衰老(Cellular senescence)是一种不可逆的细胞周期停滞状态,在组织修复、衰老和疾病中发挥着复杂的作用。然而,在识别细胞衰老方面的不一致性导致了关于其功能意义的不同结论。我们开发了一种基于机器学习的方法,该方法使用核形态计量学在单细胞分辨率下识别衰老细胞。通过应用无监督聚类和降维技术,我们构建了一个强大的流程,可区分培养系统、新鲜分离的细胞群体和组织切片中的衰老细胞。在这里,我们表明该方法揭示了再生骨骼肌和骨关节炎关节软骨中衰老的动态、与年龄相关的模式。我们的方法提供了一种广泛适用的策略,用于在不同的生物学背景下绘制和量化衰老细胞状态,提供了一种方法来轻松评估这种细胞命运如何在整个生命周期中促进组织重塑和退化。